Advertisement

HydroBox3D: Parallel & Distributed Hydrodynamical Code for Numerical Simulation of Supernova Ia

  • Igor KulikovEmail author
  • Igor Chernykh
  • Dmitry Karavaev
  • Evgeny Berendeev
  • Viktor Protasov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11657)

Abstract

In the paper a new parallel & distributed hydrodynamical code HydroBox3D for numerical simulation of supernovae Ia type explosion was described. The HydroBox3D code is created on basis of combination the adaptive nested mesh for hydrodynamical simulation of supernovae explosion and the regular mesh is second level of nested mesh for hydrodynamical simulation of nuclear reaction. The adaptive nested mesh code for shared memory architecture with using Intel Optane technology was developed. The second level of nested mesh code for Intel Xeon Phi KNL supercomputer was developed. The HydroBox3D code analysis is described. The results of numerical simulation of supernova Ia explosions on massive parallel supercomputers by means HydroBox3D code are presented.

Notes

Acknowledgements

The research work was supported by the Grant of the Russian Science Foundation (project 18-11-00044).

References

  1. 1.
    Iben, I., Tutukov, A.: On the evolution of close triple stars that produce type Ia supernovae. Astrophys. J. 511(1), 324–334 (1999)CrossRefGoogle Scholar
  2. 2.
    Springel, V.: E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. Royal Astron. Soc. 401, 791–851 (2010)CrossRefGoogle Scholar
  3. 3.
    Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Murphy, J., Burrows, A.: BETHE-hydro: an arbitrary Lagrangian-Eulerian multidimensional hydrodynamics code for astrophysical simulations. Astrophys. J. Suppl. Ser. 179, 209–241 (2008)CrossRefGoogle Scholar
  5. 5.
    Schneider, E., Robertson, B.: Cholla: a new massively parallel hydrodynamics code for astrophysical simulation. Astrophys. J. Suppl. Ser. 217(2), 24 (2015)CrossRefGoogle Scholar
  6. 6.
    Collela, P.: Multidimensional upwind methods for hyperbolic conservation laws. J. Comput. Phys. 87, 171–200 (1990)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gardiner, T., Stone, J.: An unsplit Godunov method for ideal MHD via constrained transport in three dimensions. J. Comput. Phys. 227, 4123–4141 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bryan, G., et al.: ENZO: an adaptive mesh refinement code for astrophysics. Astrophys. J. Suppl. Ser. 211(2), 19 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Springel, V.: The cosmological simulation code GADGET-2. Mon. Not. Royal Astron. Soc. 364, 1105–1134 (2005)CrossRefGoogle Scholar
  10. 10.
    Schive, H., Tsai, Y., Chiueh, T.: GAMER: a GPU-accelerated adaptive-mesh-refinement code for astrophysics. Astrophys. J. 186, 457–484 (2010)CrossRefGoogle Scholar
  11. 11.
    Hopkins, P.: A new class of accurate, mesh-free hydrodynamic simulation methods. Mon. Not. Royal Astron. Soc. 450(1), 53–110 (2015)CrossRefGoogle Scholar
  12. 12.
    Mocz, P., Vogelsberger, M., Sijacki, D., Pakmor, R., Hernquist, L.: A discontinuous Galerkin method for solving the fluid and magnetohydrodynamic equations in astrophysical simulations. Mon. Not. Royal Astron. Soc. 437(1), 397–414 (2014)CrossRefGoogle Scholar
  13. 13.
    Gaburov, E., Nitadori, K.: Astrophysical weighted particle magnetohydrodynamics. Mon. Not. Royal Astron. Soc. 414(1), 129–154 (2011)CrossRefGoogle Scholar
  14. 14.
    Teyssier, R.: Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. Astron. Astrophys. 385, 337–364 (2002)CrossRefGoogle Scholar
  15. 15.
    Candlish, G., Smith, R., Fellhauer, M.: RAyMOND: an N-body and hydrodynamics code for MOND. Mon. Not. Royal Astron. Soc. 446(1), 1060–1070 (2015)CrossRefGoogle Scholar
  16. 16.
    Timmes, F.X., Arnett, D.: The accuracy, consistency, and speed of five equations of state for stellar hydrodynamics. Astrophys. J. Suppl. Ser. 125, 277–294 (1999)CrossRefGoogle Scholar
  17. 17.
    Spillane, T., et al.: \(^{12}\)C + \(^{12}\)C fusion reactions near the Gamow energy. Phys. Rev. Lett. 98, 122501 (2007)CrossRefGoogle Scholar
  18. 18.
    Godunov, S., Kulikov, I.: Computation of discontinuous solutions of fluid dynamics equations with entropy nondecrease guarantee. Comput. Math. Math. Phys. 54, 1012–1024 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kulikov, I., Chernykh, I., Snytnikov, A., Protasov, V., Tutukov, A., Glinsky, B.: Numerical modelling of astrophysical flow on hybrid architecture supercomputers. In: Tarkov, M. (ed.) Parallel Programming: Practical Aspects, Models and Current Limitations, pp. 71–116 (2014)Google Scholar
  20. 20.
    Vshivkov, V., Lazareva, G., Snytnikov, A., Kulikov, I., Tutukov, A.: Computational methods for ill-posed problems of gravitational gasodynamics. J. Inverse Ill Posed Probl. 19(1), 151–166 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kulikov, I., Lazareva, G., Snytnikov, A., Vshivkov, V.: Supercomputer simulation of an astrophysical object collapse by the fluids-in-cell method. In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 414–422. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03275-2_41CrossRefGoogle Scholar
  22. 22.
    Rusanov, V.V.: The calculation of the interaction of non-stationary shock waves with barriers. Comput. Math. Math. Phys. 1, 267–279 (1961)MathSciNetGoogle Scholar
  23. 23.
    Kulikov, I.M., Chernykh, I.G., Tutukov, A.V.: A new parallel intel xeon phi hydrodynamics code for massively parallel supercomputers. Lobachevskii J. Math. 39(9), 1207–1216 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Popov, M., Ustyugov, S.: Piecewise parabolic method on local stencil for gasdynamic simulations. Comput. Math. Math. Phys. 47(12), 1970–1989 (2007)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Popov, M., Ustyugov, S.: Piecewise parabolic method on a local stencil for ideal magnetohydrodynamics. Comput. Math. Math. Phys. 48(3), 477–499 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kulikov, I., Vorobyov, E.: Using the PPML approach for constructing a low-dissipation, operator-splitting scheme for numerical simulations of hydrodynamic flows. J. Comput. Phys. 317, 318–346 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kulikov, I.: The numerical modeling of the collapse of molecular cloud on adaptive nested mesh. J. Phys. Conf. Ser. 1103, 012011 (2018)CrossRefGoogle Scholar
  28. 28.
    Kulikov, I.M., Chernykh, I.G., Glinskiy, B.M., Protasov, V.A.: An efficient optimization of Hll method for the second generation of Intel Xeon Phi processor. Lobachevskii J. Math. 39(4), 543–551 (2018)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Willcox, D., Townsley, D., Calder, A., Denissenkov, P., Herwig, F.: Type Ia supernova explosions from hybrid carbon - oxygen - neon white dwarf progenitors. Astrophys. J. 832(1), 13 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Igor Kulikov
    • 1
    Email author
  • Igor Chernykh
    • 1
  • Dmitry Karavaev
    • 1
  • Evgeny Berendeev
    • 1
  • Viktor Protasov
    • 1
  1. 1.Institute of Computational Mathematics and Mathematical Geophysics SB RASNovosibirskRussia

Personalised recommendations