Skip to main content

HydroBox3D: Parallel & Distributed Hydrodynamical Code for Numerical Simulation of Supernova Ia

  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11657))

Included in the following conference series:

Abstract

In the paper a new parallel & distributed hydrodynamical code HydroBox3D for numerical simulation of supernovae Ia type explosion was described. The HydroBox3D code is created on basis of combination the adaptive nested mesh for hydrodynamical simulation of supernovae explosion and the regular mesh is second level of nested mesh for hydrodynamical simulation of nuclear reaction. The adaptive nested mesh code for shared memory architecture with using Intel Optane technology was developed. The second level of nested mesh code for Intel Xeon Phi KNL supercomputer was developed. The HydroBox3D code analysis is described. The results of numerical simulation of supernova Ia explosions on massive parallel supercomputers by means HydroBox3D code are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iben, I., Tutukov, A.: On the evolution of close triple stars that produce type Ia supernovae. Astrophys. J. 511(1), 324–334 (1999)

    Article  Google Scholar 

  2. Springel, V.: E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. Royal Astron. Soc. 401, 791–851 (2010)

    Article  Google Scholar 

  3. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  4. Murphy, J., Burrows, A.: BETHE-hydro: an arbitrary Lagrangian-Eulerian multidimensional hydrodynamics code for astrophysical simulations. Astrophys. J. Suppl. Ser. 179, 209–241 (2008)

    Article  Google Scholar 

  5. Schneider, E., Robertson, B.: Cholla: a new massively parallel hydrodynamics code for astrophysical simulation. Astrophys. J. Suppl. Ser. 217(2), 24 (2015)

    Article  Google Scholar 

  6. Collela, P.: Multidimensional upwind methods for hyperbolic conservation laws. J. Comput. Phys. 87, 171–200 (1990)

    Article  MathSciNet  Google Scholar 

  7. Gardiner, T., Stone, J.: An unsplit Godunov method for ideal MHD via constrained transport in three dimensions. J. Comput. Phys. 227, 4123–4141 (2008)

    Article  MathSciNet  Google Scholar 

  8. Bryan, G., et al.: ENZO: an adaptive mesh refinement code for astrophysics. Astrophys. J. Suppl. Ser. 211(2), 19 (2014)

    Article  MathSciNet  Google Scholar 

  9. Springel, V.: The cosmological simulation code GADGET-2. Mon. Not. Royal Astron. Soc. 364, 1105–1134 (2005)

    Article  Google Scholar 

  10. Schive, H., Tsai, Y., Chiueh, T.: GAMER: a GPU-accelerated adaptive-mesh-refinement code for astrophysics. Astrophys. J. 186, 457–484 (2010)

    Article  Google Scholar 

  11. Hopkins, P.: A new class of accurate, mesh-free hydrodynamic simulation methods. Mon. Not. Royal Astron. Soc. 450(1), 53–110 (2015)

    Article  Google Scholar 

  12. Mocz, P., Vogelsberger, M., Sijacki, D., Pakmor, R., Hernquist, L.: A discontinuous Galerkin method for solving the fluid and magnetohydrodynamic equations in astrophysical simulations. Mon. Not. Royal Astron. Soc. 437(1), 397–414 (2014)

    Article  Google Scholar 

  13. Gaburov, E., Nitadori, K.: Astrophysical weighted particle magnetohydrodynamics. Mon. Not. Royal Astron. Soc. 414(1), 129–154 (2011)

    Article  Google Scholar 

  14. Teyssier, R.: Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. Astron. Astrophys. 385, 337–364 (2002)

    Article  Google Scholar 

  15. Candlish, G., Smith, R., Fellhauer, M.: RAyMOND: an N-body and hydrodynamics code for MOND. Mon. Not. Royal Astron. Soc. 446(1), 1060–1070 (2015)

    Article  Google Scholar 

  16. Timmes, F.X., Arnett, D.: The accuracy, consistency, and speed of five equations of state for stellar hydrodynamics. Astrophys. J. Suppl. Ser. 125, 277–294 (1999)

    Article  Google Scholar 

  17. Spillane, T., et al.: \(^{12}\)C + \(^{12}\)C fusion reactions near the Gamow energy. Phys. Rev. Lett. 98, 122501 (2007)

    Article  Google Scholar 

  18. Godunov, S., Kulikov, I.: Computation of discontinuous solutions of fluid dynamics equations with entropy nondecrease guarantee. Comput. Math. Math. Phys. 54, 1012–1024 (2014)

    Article  MathSciNet  Google Scholar 

  19. Kulikov, I., Chernykh, I., Snytnikov, A., Protasov, V., Tutukov, A., Glinsky, B.: Numerical modelling of astrophysical flow on hybrid architecture supercomputers. In: Tarkov, M. (ed.) Parallel Programming: Practical Aspects, Models and Current Limitations, pp. 71–116 (2014)

    Google Scholar 

  20. Vshivkov, V., Lazareva, G., Snytnikov, A., Kulikov, I., Tutukov, A.: Computational methods for ill-posed problems of gravitational gasodynamics. J. Inverse Ill Posed Probl. 19(1), 151–166 (2011)

    Article  MathSciNet  Google Scholar 

  21. Kulikov, I., Lazareva, G., Snytnikov, A., Vshivkov, V.: Supercomputer simulation of an astrophysical object collapse by the fluids-in-cell method. In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 414–422. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03275-2_41

    Chapter  Google Scholar 

  22. Rusanov, V.V.: The calculation of the interaction of non-stationary shock waves with barriers. Comput. Math. Math. Phys. 1, 267–279 (1961)

    MathSciNet  Google Scholar 

  23. Kulikov, I.M., Chernykh, I.G., Tutukov, A.V.: A new parallel intel xeon phi hydrodynamics code for massively parallel supercomputers. Lobachevskii J. Math. 39(9), 1207–1216 (2018)

    Article  MathSciNet  Google Scholar 

  24. Popov, M., Ustyugov, S.: Piecewise parabolic method on local stencil for gasdynamic simulations. Comput. Math. Math. Phys. 47(12), 1970–1989 (2007)

    Article  MathSciNet  Google Scholar 

  25. Popov, M., Ustyugov, S.: Piecewise parabolic method on a local stencil for ideal magnetohydrodynamics. Comput. Math. Math. Phys. 48(3), 477–499 (2008)

    Article  MathSciNet  Google Scholar 

  26. Kulikov, I., Vorobyov, E.: Using the PPML approach for constructing a low-dissipation, operator-splitting scheme for numerical simulations of hydrodynamic flows. J. Comput. Phys. 317, 318–346 (2016)

    Article  MathSciNet  Google Scholar 

  27. Kulikov, I.: The numerical modeling of the collapse of molecular cloud on adaptive nested mesh. J. Phys. Conf. Ser. 1103, 012011 (2018)

    Article  Google Scholar 

  28. Kulikov, I.M., Chernykh, I.G., Glinskiy, B.M., Protasov, V.A.: An efficient optimization of Hll method for the second generation of Intel Xeon Phi processor. Lobachevskii J. Math. 39(4), 543–551 (2018)

    Article  MathSciNet  Google Scholar 

  29. Willcox, D., Townsley, D., Calder, A., Denissenkov, P., Herwig, F.: Type Ia supernova explosions from hybrid carbon - oxygen - neon white dwarf progenitors. Astrophys. J. 832(1), 13 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The research work was supported by the Grant of the Russian Science Foundation (project 18-11-00044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Kulikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kulikov, I., Chernykh, I., Karavaev, D., Berendeev, E., Protasov, V. (2019). HydroBox3D: Parallel & Distributed Hydrodynamical Code for Numerical Simulation of Supernova Ia. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2019. Lecture Notes in Computer Science(), vol 11657. Springer, Cham. https://doi.org/10.1007/978-3-030-25636-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25636-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25635-7

  • Online ISBN: 978-3-030-25636-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics