Advertisement

Assessment and Design of Employees-Cobot-Interaction

  • Christoph MühlemeyerEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1018)

Abstract

Prima facie employees-cobot-interaction has the potential to minimize or even eliminate occupational physical and mental health risks. For example when the redesign results in the situation where tasks with high intensity, duration and frequency of physical exposure or monotonous activities are performed by the cobot. But even setting up a modern and inherently safe cobot-workplace does not necessarily mean a prevention of physical and mental health risks and is not automatically ensuring decent working conditions and, at worst, can result in downgraded working conditions. The article - see below - demonstrates this paradoxical situation by a comparison of an employees-cobot-interaction in the sense of industry 4.0 and digitization with its initial situation. For a standardized quantification, the procedural economic, holistic and ergonomic instrument of the BDS-System has been applied practically.

Keywords

Cobots Holistic approach BDS-Instrument Simulation KPIs Workplace design Digital ergonomics KIM-MHO Shopfloor transition 

References

  1. 1.
    German Institute for Standardization: Robots and robotic devices - Safety requirements for industrial robots - Part 1: Robots. (ISO 10218-1:2011). German version EN ISO 10218-1:2011. DIN (2011)Google Scholar
  2. 2.
    European Parliament and of the Council: Directive 2006/42/EC of the European Parliament and of the Council of 17 May 2006 on machinery, and amending Directive 95/16/EC (2006)Google Scholar
  3. 3.
    Federal Law Gazette: Act on the Implementation of Measures of Occupational Safety and Health to Encourage Improvements in the Safety and Health Protection of Workers at Work (Deutsches Arbeitsschutzgesetz (ArbSchG)). Bundesgesetzblatt – BGBl. I S. 1246 (2006)Google Scholar
  4. 4.
    Federal Law Gazette: Regulation regarding Safety and Health Protection in Providing Work Equipment and its use in Work. (Betriebssicherheitsverordnung -BetrSichV). Bundesgesetzblatt - BGBl. I S. 49 (2015)Google Scholar
  5. 5.
    German Institute for Standardization: Ergonomics principles in the design of work systems (ISO 6385:2016). German Institute for Standardization. German version EN ISO 6385:2016. DIN (2011)Google Scholar
  6. 6.
    Joint Ministerial Gazette: Gefährdungen an der Schnittstelle Mensch - Arbeitsmittel - Ergonomische und menschliche Faktoren, Arbeitssystem. TRBS 1151. GMBl, no. 17/18, p. 340 (2015)Google Scholar
  7. 7.
    Bauer, W., Bender, M., Braun, M., Rally, P., Scholtz, O.: Leichtbauroboter in der manuellen Montage – einfach einfach anfangen. Fraunhofer IAO (2016)Google Scholar
  8. 8.
    Müller, B.H., Hettinger, Th: Interpretations- und Bewertungsverfahren arbeitswissenschaftlich-ergonomischer Felddaten. Zeitschrift für Arbeitswissenschaft 35, 82–86 (1981)Google Scholar
  9. 9.
    Peters, H.: Verfahren zur Beurteilung arbeitsbedingter Belastungen BAB. In: Erfassung und Bewertung arbeitswissenschaftlicher Daten. Schriften des IfaA (Hrsg.), no. 62, pp. 64–78, Köln (1986)Google Scholar
  10. 10.
    Klußmann, A., Mühlemeyer, C., Lang, K.-H., Dolfen, P., Wendt, K.-D., Gebhardt, H., Neumann, B., Schäfer, A.: Praxisbewährte Methoden zur Bewertung und Gestaltung physischer Arbeitsbelastungen. Leistung und Lohn – Zeitschrift für Arbeitswirtschaft, BDA – Bundesvereinigung der Deutschen Arbeitgeberverbände (Hrsg.), no. 541–545. Heider-Verlag, Berlin, Bergisch Gladbach (2013)Google Scholar
  11. 11.
    Klußmann, A., Steinberg, U., Liebers, F., Gebhardt, H., Rieger, M.A.: The key indicator method for manual handling operations (KIM-MHO) – evaluation of a new method for the assessment of working conditions within a cross-sectional study. BMC Musculoskelet. Disord. 11, 272 (2010).  https://doi.org/10.1186/1471-2474-11-272. ISSN 1471-2474CrossRefGoogle Scholar
  12. 12.
    Steinberg, U., Liebers, F., Klußmann, A., Gebhardt, H., Rieger, M.A., Behrendt, S., Latza, U.: Leitmerkmalmethode Manuelle Arbeitsprozesse 2011. Bericht über die Erprobung, Validierung und Revision. BAuA, Dortmund (2012). ISBN 978-3-88261-722-1Google Scholar
  13. 13.
    Klußmann, A., Liebers, F., Gebhardt, Hj, Rieger, M.A., Latza, U.: Steinberg: Risk assessment of manual handling operations at work with the key indicator method (KIM-MHO) – determination of criterion validity regarding the prevalence of musculoskeletal symptoms and clinical conditions within a cross-sectional study. BMC Musculoskelet. Disord. 18, 184 (2017).  https://doi.org/10.1186/s12891-017-1542-0. ISSN 1471-2474CrossRefGoogle Scholar
  14. 14.
    Joint Ministerial Gazette: AMR 13.2 “Tätigkeiten mit wesentlich erhöhten körperlichen Belastungen mit Gesundheitsgefährdungen für das Muskel-Skelett-System”. GMBl, 23, no. 76–77, p. 1571 (2014)Google Scholar
  15. 15.
    Federal Law Gazette: Maternity Protection Act. Gesetz zum Schutz von Müttern bei der Arbeit, in der Ausbildung und im Studium (Mutterschutzgesetz - MuSchG). BGBl. I S. 1228 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Occupational Health, Safety and Ergonomics (ASER e. V.)WuppertalGermany

Personalised recommendations