Skip to main content

Unobtrusive Sensing Solution for Post-stroke Rehabilitation

  • Chapter
  • First Online:

Part of the book series: Computer Communications and Networks ((CCN))

Abstract

This Chapter proposes an unobtrusive sensing solution for monitoring post-stroke rehabilitation exercises within a home environment. It begins with the definition of stroke, its types, statistics and effects. An overview of stroke rehabilitation techniques ranging from multiple exercising and isolated approaches to motor skill learning, mirror imagery, adjuvant therapies and technology-based interventions are all presented in this Chapter. In addition, the potential for the use of unobtrusive sensing solutions such as thermal, radar, optical and ultrasound sensing are considered with practical examples. The Seebeck, time of flight (ToF) and Doppler principles, which are associated with a number of the sensing solutions, are also explained. Furthermore, sensor data fusion (SDF) and its architectures such as centralized, distributed and hybrid architectures are explained. A few examples of SDF applications in automobile and terrestrial light detection are included in addition to the advantages and disadvantages of the approaches. Unobtrusive sensing solutions and their applications in healthcare are captured in this Chapter. The Chapter includes details of initial experimental results on post-stroke rehabilitation exercises which were obtained using thermal and radar sensing solutions. The Chapter concludes with an outline of recommendations for future research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wilson CB (1999) Sensors in medicine 319:13–15

    Google Scholar 

  2. Dhiraj A, Deepa P (2012) Sensors and their applications. J Phys E: Sci Instrum 1(5):60–68

    Google Scholar 

  3. Spring S, Sutton WM (2015) Classification overview

    Google Scholar 

  4. Lymberis A (2000) Smart wearables for remote health monitoring, from prevention to rehabilitation: current R&D, future challenges. In: Proceedings of the 4th annual IEEE conference on information technology applications in biomedicine, UK, vol 7, no 1, pp 25–4888

    Google Scholar 

  5. Giorgino T, Tormene P, Maggioni G, Pistarini C, Quaglini S (2005) Wearable kinesthetic system for capturing and classifying upper limb gesture in post-stroke rehabilitation. J NeuroEng Rehabil 2:1–16

    Article  Google Scholar 

  6. Whipple RH (1970) Specificity of speed of exercise T 1692–1700

    Google Scholar 

  7. Fung J, Richards CL, Malouin F, McFadyen BJ, Lamontagne A (2006) A treadmill and motion coupled virtual reality system for gait training post-stroke. CyberPsychol Behav 9(2):157–162

    Article  Google Scholar 

  8. Haux R, Koch S, Lovell NH, Marschollek M, Nakashima N, Wolf K-H (2016) Health-enabling and ambient assistive technologies: past, present, future. Yearb Med Inf 25(S 01):S76–S91

    Google Scholar 

  9. D’Aliberti G, Longoni M, Motto C, Oppo V, Perini V, Valvassori L, Vidale S (2017) Emergency management in neurology, pp 1–91

    Google Scholar 

  10. Stroke Association (2018) State of the nation stroke statistics, February

    Google Scholar 

  11. “Pathophysiology_Neuro4Students,” Neuro4Students, 2010. [Online]. Available: https://neuro4students.wordpress.com/pathophysiology/

  12. Morgenstern LB, Hemphill JC III, Anderson C, Becker K, Broderick JP, Connolly ES Jr, Greenberg SM, Huang JN, Macdonald RL, Messé SR, Mitchell PH, Selim M, Tamargo RJ (2010) Guidelines for the management of spontaneous intracerebral hemorrhage. Stroke 41(9):2108–2129

    Article  Google Scholar 

  13. Wieroniey A (2016) A new era for stroke. Br J Neurosci Nurs 12:S6–S8

    Article  Google Scholar 

  14. Raffin E, Hummel FC (2018) Restoring motor functions after stroke: multiple approaches and opportunities. Neuroscientist 24(4):400–416

    Article  Google Scholar 

  15. Kalra L, Ratan R (2007) Recent advances in stroke rehabilitation 2006. Stroke 38(2):235–237

    Article  Google Scholar 

  16. Cramer SC (2008) Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol 63(3):272–287

    Article  Google Scholar 

  17. Chollet F, Dipiero V, Wise RJS, Brooks DJ, Dolan RJ, Frackowiak RSJ (2018) The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol 29(1):63–71

    Article  Google Scholar 

  18. Hatem S, Saussez G, della Faille M, Prist V, Zhang X, Dispa D, Bleyenheuft Y (2016) Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Hum Neurosci 10:bl 442

    Google Scholar 

  19. Kwakkel G, Peppe R, Wagenaar R, Dauphinee C, Richards S, Ashburn A, Kimberly M, Lincoln N, Partridge C, Wellwood I, Langhorne P (2004) Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke 35(11):2529–2536

    Article  Google Scholar 

  20. Wang R, Chen H, Chen C, Yang Y (2005) Efficacy of Bobath versus orthopaedic approach on impairment and function at different motor recovery stages after stroke: a randomized controlled study. Clin Rehabil 19(2):155–164

    Article  Google Scholar 

  21. Pollock A, Baer G, Campbell P, Choo P, Forster A, Morris J, Pomeroy V (2014) Physical rehabilitation approaches for the recovery of function and mobility following stroke

    Google Scholar 

  22. Delden A, Peper C, Harlaar J, Daffershofer A, Zijp N, Nienhuys K, Koppe P, Kwakkel G, Beek P (2009) Comparing unilateral and bilateral upper limb training: the ULTRA-stroke program design. BMC Neurol 9(1):1–14

    Google Scholar 

  23. Muratori LM, Lamberg EM, Quinn L, Duff SV (2013) Applying principles of motor learning and control to upper extremity rehabilitation. J Hand Ther Off J Am Soc Hand Ther 26(2):94–102, quiz 103

    Article  Google Scholar 

  24. Sirtori V, Corbetta D, Moja L, Gatti R (2009) Constraint-induced movement therapy for upper extremities in stroke patients (review). Cochrane Rev (4):4–6

    Google Scholar 

  25. Wolf SL, Winstein CJ, Miller JP (2006) Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the excite randomized clinical trial. JAMA 296(17):2095–2104

    Article  Google Scholar 

  26. Langhorne P, Coupar F, Pollock A (2009) Motor recovery after stroke: a systematic review. Lancet Neurol 8(8):741–754

    Article  Google Scholar 

  27. Page SJ, Levine P, Leonard A, Szaflarski JP, Kissela BM (2008) Modified constraint-induced therapy in chronic stroke: results of a single-blinded randomized controlled trial. Phys Ther 88(3):333–340

    Article  Google Scholar 

  28. Wittkopf PG, Johnson MI (2017) Mirror therapy: a potential intervention for pain management. Rev Assoc Méd Bras 63(11):1000–1005

    Article  Google Scholar 

  29. Carvalho D, Teixeira S, Lucas M, Yuan T-F, Chaves F, Peressutti C, Machado S, Bittencourt J, Menéndez-González M, Nardi AE, Velasques B, Cagy M, Piedade R, Ribeiro P, Arias-Carrión O (2013) The mirror neuron system in post-stroke rehabilitation. Int Arch Med 6:41

    Article  Google Scholar 

  30. Huynh T (2015) Fundamentals of thermal sensors

    Google Scholar 

  31. Hevesi P, Wille S, Pirkl G, Wehn N, Lukowicz P (2014) Monitoring household activities and user location with a cheap, unobtrusive thermal sensor array. In: Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing—UbiComp’14 Adjunct, pp 141–145

    Google Scholar 

  32. Trofimova AA, Masciadri A, Veronese F, Salice F (2017) Indoor human detection based on thermal array sensor data and adaptive background estimation, March

    Google Scholar 

  33. Mukherjee A, Saha T (2018) Precision Thermocouple Amplifier for substrate temperature monitoring in an ECR-PE nano-film deposition system. In: IEEE, vol 4, no 18

    Google Scholar 

  34. Sobrino JA, Del Frate F, Drusch M, Jiménez-Muñoz JC, Manunta P, Regan A (2016) Review of thermal infrared applications and requirements for future high-resolution sensors. IEEE Trans Geosci Remote Sens 54(5):2963–2972

    Article  Google Scholar 

  35. Berni JAJ, Zarco-Tejada PJ, Suárez L, González-Dugo V, Fereres E (2009) Remote sensing of vegetation from UAV platforms using lightweight multispectral and thermal imaging sensors. Int Arch Photogramm Remote Sens Spatial Inform Sci 38:6 pp

    Google Scholar 

  36. Dinh T, Phan H, Qamar A, Woodfield P, Nguyen N, Dao DV (2017) Thermoresistive effect for advanced thermal sensors: fundamentals, design considerations, and applications 26(5):966–986

    Google Scholar 

  37. Khanal S, Fulton J, Shearer S (2017) An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput Electron Agric 139:22–32

    Article  Google Scholar 

  38. Inman K, Wang X, Sangeorzan B (2010) Design of an optical thermal sensor for proton exchange membrane fuel cell temperature measurement using phosphor thermometry. J Power Sour 195(15):4753–4757

    Article  Google Scholar 

  39. Al-Hourani A, Evans R, Farrell P, Moran B, Martorella M, Kandeepan S, Skafidas S (2018) Millimeter-wave integrated radar systems and techniques. In: Academic press library in signal processing, vol 7. Elsevier, pp 317–363

    Google Scholar 

  40. Li C, Peng Z, Huang TY, Fan T, Wang FK, Horng TS, Munoz-Ferreras JM, Gomez-Garcia R, Ran L, Lin JA (2017) A review on recent progress of portable short-range noncontact microwave radar systems. IEEE Trans Microw Theory Tech 65(5):1692–1706

    Article  Google Scholar 

  41. Parker M, Parker M (2017) Pulse doppler radar. In: Digital signal processing, vol 101. Elsevier, pp 241–251

    Google Scholar 

  42. Fidanboylu KA, Efendioglu HS (2011) Fiber optic sensors and their applications. In: Symposium a quarterly journal in modern foreign literatures, May, pp 1–6

    Google Scholar 

  43. Bilal MR (2017) Ultrasonic sensor working applications and advantages. Microcontrollers Lab

    Google Scholar 

  44. Terabee (2016) Time-of-flight principle, measuring the distance between sensor/object

    Google Scholar 

  45. Jitendra R (2013) Multi-sensor data fusion with MATLAB, vol 106, no 11. CRC Press, 6000 Broken Sound Parkway NW

    Google Scholar 

  46. Lytrivis P, Thomaidis G, Amditis A, Lytrivis P, Thomaidis G (2009) Sensor data fusion in automotive applications. INTECH, February, p 490

    Google Scholar 

  47. Kim T, Kim S, Lee E, Park M (2017) Comparative analysis of RADAR-IR sensor fusion methods for object detection. In: ICCAS, pp 1576–1580

    Google Scholar 

  48. Kim S, Song W, Kim S (2018) Double weight-based SAR and infrared sensor fusion for automatic ground target recognition with deep learning. Remote Sensing 72(10): 2072–4292

    Google Scholar 

  49. Guan K, Wu J, Kimball J, Anderson M, Frolking S, Li B, Hain C, Lobell D The shared and unique values of optical, fluorescence, thermal and microwave satellite data for estimating large-scale crop yields. Remote Sens of Environ 199:333–349

    Article  Google Scholar 

  50. Ivan P (2018) Reconstructing the Roman Site ‘Aquis Querquennis’ 379(10):1–16

    Google Scholar 

  51. Sondhi A (2017) Detecting human emotions: blue eyes technology 2(6):12–16

    Google Scholar 

  52. Van Dijk R, Liang W, Zhang B (2017) Development and evaluation of a non-obtrusive patient monitoring system with smart patient beds. In: Distributed, ambient and pervasive interactions, pp 482–490

    Google Scholar 

  53. Meng L, Miao C, Miao C, Leung C (2017) Towards online and personalized daily activity recognition, habit modeling, and anomaly detection for the solitary elderly through unobtrusive sensing. Multimedia Tools Appl 76(8):10779–10799

    Article  Google Scholar 

  54. Kim JY, Liu N, Tan HX, Chu CH (2017) Unobtrusive monitoring to detect depression for elderly with chronic illnesses. IEEE Sens J 17(17):5694–5704

    Article  Google Scholar 

  55. Kumar MS (2017) Unobtrusive sensing and wearable device for soldiers using WNS 3(10):580–587

    Google Scholar 

  56. Hall T, Lie DYC, Nguyen TQ, Mayeda JC, Lie PE, Lopez J, Banister RE (2017) Non-contact sensor for long-term continuous vital signs monitoring: a review on intelligent phased-array doppler sensor design. Sensors (Switzerland) 17(11):1–20

    Article  Google Scholar 

  57. Diraco G, Leone A, Siciliano P (2017) A radar-based smart sensor for unobtrusive elderly monitoring in ambient assisted living applications. Biosensors 7(4)

    Article  Google Scholar 

  58. Li W, Tan B, Piechocki R (2018) Passive radar for opportunistic monitoring in e-health applications. IEEE J Transl Eng Health Med 6, September 2017

    Google Scholar 

  59. TutorVista.com (2018) Doppler shift formula 7440(iv):1–4

    Google Scholar 

  60. Rafferty J, Synnott J, Nugent C, Ennis A, Catherwood P, McChesney I, Cleland I, McClean S (2018) A scalable, research oriented, generic, sensor data platform. IEEE Access 6:bll 45473–45484

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the European Union’s INTERREG VA Programme, managed by the Special EU Programmes Body (SEUPB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idongesit Ekerete .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ekerete, I., Nugent, C., Giggins, O.M., McLaughlin, J. (2020). Unobtrusive Sensing Solution for Post-stroke Rehabilitation. In: Chen, F., García-Betances, R., Chen, L., Cabrera-Umpiérrez, M., Nugent, C. (eds) Smart Assisted Living. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-25590-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25590-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25589-3

  • Online ISBN: 978-3-030-25590-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics