Skip to main content

Immunoepidemiology of Plasmodium falciparum malaria

  • Chapter
  • First Online:
Immunoepidemiology

Abstract

Immunoepidemiology studies of malaria have historically been performed to try to identify and understand the key targets and mechanisms of protective immunity, in order to understand the immune response to disease and infection, and to ultimately inform vaccine design. However, immunoepidemiology studies have also been informative in the identification of fine-resolution markers of exposure to malaria, in addition to protection, allowing the precise mapping of changes in transmission intensity. Such efforts are aimed at informing the progress of malaria control efforts, mapping hot spots in areas of unstable transmission or in pre-elimination settings. This chapter will explore key developments in immunoepidemiology of malaria and the impact they may have on informing public health interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526(7572):207–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gething PW, Casey DC, Weiss DJ, Bisanzio D, Bhatt S, Cameron E, et al. Mapping Plasmodium falciparum mortality in Africa between 1990 and 2015. N Engl J Med. 2016;375(25):2435–45.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Battle KE, Guerra CA, Golding N, Duda KA, Cameron E, Howes RE, Elyazar IR, Baird JK, Reiner RC Jr, Gething PW, Smith DL, Hay SI. Global database of matched Plasmodium falciparum and P. vivax incidence and prevalence records from 1985–2013. Sci Data. 2015;2:150012.

    Article  PubMed  PubMed Central  Google Scholar 

  4. McGregor I. The development and maintenance of immunity to malaria in highly endemic areas. Clin Trop Med Commun Dis. 1986;1986(1):1–29.

    Google Scholar 

  5. Mackinnon MJ, Marsh K. The selection landscape of malaria parasites. Science. 2010;328(5980):866–71.

    Article  CAS  PubMed  Google Scholar 

  6. Riley EM, Stewart VA. Immune mechanisms in malaria: new insights in vaccine development. Nat Med. 2013;19(2):168–78.

    Article  CAS  PubMed  Google Scholar 

  7. Nussenzweig RS, Vanderberg J, Most H, Orton C. Protective immunity produced by the injection of x-irradiated sporozoites of plasmodium berghei. Nature. 1967;216(5111):160–2.

    Article  CAS  PubMed  Google Scholar 

  8. Seder RA, Chang LJ, Enama ME, Zephir KL, Sarwar UN, Gordon IJ, et al. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science. 2013;341(6152):1359–65.

    Article  CAS  PubMed  Google Scholar 

  9. Cockburn IA, Seder RA. Malaria prevention: from immunological concepts to effective vaccines and protective antibodies. Nat Immunol. 2018;19(11):1199–211.

    Article  CAS  PubMed  Google Scholar 

  10. Langhorne J, Ndungu FM, Sponaas AM, Marsh K. Immunity to malaria: more questions than answers. Nat Immunol. 2008;9(7):725–32.

    Article  CAS  PubMed  Google Scholar 

  11. Kreutzfeld O, Muller K, Matuschewski K. Engineering of Genetically Arrested Parasites (GAPs) for a precision malaria vaccine. Front Cell Infect Microbiol. 2017;7:198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zenonos ZA, Rayner JC, Wright GJ. Towards a comprehensive Plasmodium falciparum merozoite cell surface and secreted recombinant protein library. Malar J. 2014;13:93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Bartholdson SJ, Crosnier C, Bustamante LY, Rayner JC, Wright GJ. Identifying novel Plasmodium falciparum erythrocyte invasion receptors using systematic extracellular protein interaction screens. Cell Microbiol. 2013;15(8):1304–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Osier FH, Mackinnon MJ, Crosnier C, Fegan G, Kamuyu G, Wanaguru M, et al. New antigens for a multicomponent blood-stage malaria vaccine. Sci Transl Med. 2014;6(247):247ra102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kamuyu G, Tuju J, Kimathi R, Mwai K, Mburu J, Kibinge N, et al. KILchip v1.0: a novel Plasmodium falciparum Merozoite protein microarray to facilitate malaria vaccine candidate prioritization. Front Immunol. 2018;9:2866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Crompton PD, Kayala MA, Traore B, Kayentao K, Ongoiba A, Weiss GE, et al. A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray. Proc Natl Acad Sci U S A. 2010;107(15):6958–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dent AE, Nakajima R, Liang L, Baum E, Moormann AM, Sumba PO, et al. Plasmodium falciparum protein microarray antibody profiles correlate with protection from symptomatic malaria in Kenya. J Infect Dis. 2015;212(9):1429–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sergent E, Parrot L. L'immunité, la prémunition et la résistance innée. Archives de l’Institut Pasteur d’Algérie. 1935;13:279–319.

    Google Scholar 

  19. Gupta S, Day KP. A strain theory of malaria transmission. Parasitol Today. 1994;10(12):476–81.

    Article  CAS  PubMed  Google Scholar 

  20. Trape JF, Tall A, Sokhna C, Ly AB, Diagne N, Ndiath O, et al. The rise and fall of malaria in a West African rural community, Dielmo, Senegal, from 1990 to 2012: a 22 year longitudinal study. Lancet Infect Dis. 2014;14(6):476–88.

    Article  PubMed  Google Scholar 

  21. Rogier C. Natural history of Plasmodium falciparum malaria and determining factors of the acquisition of antimalaria immunity in two endemic areas, Dielmo and Ndiop (Senegal). Bull Mem Acad R Med Belg. 2000;155(5–6):218–26.

    CAS  PubMed  Google Scholar 

  22. Marsh K, Otoo L, Hayes RJ, Carson DC, Greenwood BM. Antibodies to blood stage antigens of Plasmodium falciparum in rural Gambians and their relation to protection against infection. Trans R Soc Trop Med Hyg. 1989;83(3):293–303.

    Article  CAS  PubMed  Google Scholar 

  23. Marsh K, Hayes RH, Carson DC, Otoo L, Shenton F, Byass P, et al. Anti-sporozoite antibodies and immunity to malaria in a rural Gambian population. Trans R Soc Trop Med Hyg. 1988;82(4):532–7.

    Article  CAS  PubMed  Google Scholar 

  24. Bejon P, Williams TN, Liljander A, Noor AM, Wambua J, Ogada E, et al. Stable and unstable malaria hotspots in longitudinal cohort studies in Kenya. PLoS Med. 2010;7(7):e1000304.

    Article  PubMed  PubMed Central  Google Scholar 

  25. McGregor IA. Mechanisms of acquired immunity and epidemiological patterns of antibody responses in malaria in man. Bull World Health Organ. 1974;50(3–4):259–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Marsh K, Kinyanjui S. Immune effector mechanisms in malaria. Parasite Immunol. 2006;28:51–60.

    Article  CAS  PubMed  Google Scholar 

  27. Kinyanjui SM, Bejon P, Osier FH, Bull PC, Marsh K. What you see is not what you get: implications of the brevity of antibody responses to malaria antigens and transmission heterogeneity in longitudinal studies of malaria immunity. Malar J. 2009;8:242.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Marsh K, Howard RJ. Antigens induced on erythrocytes by P. falciparum: expression of diverse and conserved determinants. Science. 1986;231(4734):150–3.

    Article  CAS  PubMed  Google Scholar 

  29. Newbold CI, Pinches R, Roberts DJ, Marsh K. Plasmodium falciparum: the human agglutinating antibody response to the infected red cell surface is predominantly variant specific. Exp Parasitol. 1992;75(3):281–92.

    Article  CAS  PubMed  Google Scholar 

  30. McKenzie FE, Smith DL, O'Meara WP, Riley EM. Strain theory of malaria: the first 50 years. Adv Parasitol. 2008;66:1–46.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jeffery GM. Epidemiological significance of repeated infections with homologous and heterologous strains and species of Plasmodium. Bull World Health Organ. 1966;35(6):873–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Recker M, Buckee CO, Serazin A, Kyes S, Pinches R, Christodoulou Z, et al. Antigenic variation in Plasmodium falciparum malaria involves a highly structured switching pattern. PLoS Pathog. 2011;7(3):e1001306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Buckee CO, Bull PC, Gupta S. Inferring malaria parasite population structure from serological networks. Proc Biol Sci. 2009;276(1656):477–85.

    Article  PubMed  Google Scholar 

  34. Osier FH, Fegan G, Polley SD, Murungi L, Verra F, Tetteh KK, et al. Breadth and magnitude of antibody responses to multiple Plasmodium falciparum merozoite antigens are associated with protection from clinical malaria. Infect Immun. 2008;76(5):2240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moormann AM, Stewart VA. The hunt for protective correlates of immunity to Plasmodium falciparum malaria. BMC Med. 2014;12:134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Plotkin SA, Gilbert PB. Nomenclature for immune correlates of protection after vaccination. Clin Infect Dis. 2012;54(11):1615–7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fowkes FJ, Richards JS, Simpson JA, Beeson JG. The relationship between anti-merozoite antibodies and incidence of Plasmodium falciparum malaria: a systematic review and meta-analysis. PLoS Med. 2010;7(1):e1000218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Hoffman SL, Oster CN, Plowe CV, Woollett GR, Beier JC, Chulay JD, et al. Naturally acquired antibodies to sporozoites do not prevent malaria: vaccine development implications. Science. 1987;237(4815):639–42.

    Article  CAS  PubMed  Google Scholar 

  39. Hill DL, Schofield L, Wilson DW. IgG opsonization of merozoites: multiple immune mechanisms for malaria vaccine development. Int J Parasitol. 2017;47(10–11):585–95.

    Article  CAS  PubMed  Google Scholar 

  40. Cohen S, Mc GI, Carrington S. Gamma-globulin and acquired immunity to human malaria. Nature. 1961;192:733–7.

    Article  CAS  PubMed  Google Scholar 

  41. Guillotte M, Juillerat A, Igonet S, Hessel A, Petres S, Crublet E, et al. Immunogenicity of the Plasmodium falciparum PfEMP1-VarO Adhesin: induction of surface-reactive and rosette-disrupting antibodies to VarO infected erythrocytes. PLoS One. 2015;10(7):e0134292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Pehrson C, Heno KK, Adams Y, Resende M, Mathiesen L, Soegaard M, et al. Comparison of functional assays used in the clinical development of a placental malaria vaccine. Vaccine. 2017;35(4):610–8.

    Article  CAS  PubMed  Google Scholar 

  43. Douglas AD, Baldeviano GC, Jin J, Miura K, Diouf A, Zenonos ZA, Ventocilla JA, Silk SE, Marshall JM, Alanine DGW, Wang C, Edwards NJ, Leiva KP, Gomez-Puerta LA, Lucas CM, Wright GJ, Long CA, Royal JM, Draper SJ. A defined mechanistic correlate of protection against Plasmodium falciparum malaria in non-human primates. Nature Communications. 2019;10(1)

    Google Scholar 

  44. Tuju J, Kamuyu G, Murungi LM, Osier FHA. Vaccine candidate discovery for the next generation of malaria vaccines. Immunology. 2017;152(2):195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Raj DK, Nixon CP, Nixon CE, Dvorin JD, DiPetrillo CG, Pond-Tor S, et al. Antibodies to PfSEA-1 block parasite egress from RBCs and protect against malaria infection. Science. 2014;344(6186):871–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Druilhe P, Spertini F, Soesoe D, Corradin G, Mejia P, Singh S, et al. A malaria vaccine that elicits in humans antibodies able to kill Plasmodium falciparum. PLoS Med. 2005;2(11):e344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Bouharoun-Tayoun H, Attanath P, Sabchareon A, Chongsuphajaisiddhi T, Druilhe P. Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes. J Exp Med. 1990;172(6):1633–41.

    Article  CAS  PubMed  Google Scholar 

  48. Oeuvray C, Bouharoun-Tayoun H, Grass-Masse H, Lepers JP, Ralamboranto L, Tartar A, et al. A novel merozoite surface antigen of Plasmodium falciparum (MSP-3) identified by cellular-antibody cooperative mechanism antigenicity and biological activity of antibodies. Mem Inst Oswaldo Cruz. 1994;89(Suppl 2):77–80.

    Article  PubMed  Google Scholar 

  49. Tran TM, Ongoiba A, Coursen J, Crosnier C, Diouf A, Huang CY, et al. Naturally acquired antibodies specific for Plasmodium falciparum reticulocyte-binding protein homologue 5 inhibit parasite growth and predict protection from malaria. J Infect Dis. 2014;209(5):789–98.

    Article  CAS  PubMed  Google Scholar 

  50. Patel SD, Ahouidi AD, Bei AK, Dieye TN, Mboup S, Harrison SC, et al. Plasmodium falciparum merozoite surface antigen, PfRH5, elicits detectable levels of invasion-inhibiting antibodies in humans. J Infect Dis. 2013;208(10):1679–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Payne RO, Milne KH, Elias SC, Edwards NJ, Douglas AD, Brown RE, et al. Demonstration of the blood-stage Plasmodium falciparum controlled human malaria infection model to assess efficacy of the P. falciparum apical membrane antigen 1 vaccine, FMP2.1/AS01. J Infect Dis. 2016;213(11):1743–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. King CL, Michon P, Shakri AR, Marcotty A, Stanisic D, Zimmerman PA, et al. Naturally acquired Duffy-binding protein-specific binding inhibitory antibodies confer protection from blood-stage Plasmodium vivax infection. Proc Natl Acad Sci U S A. 2008;105(24):8363–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Neafsey DE, Juraska M, Bedford T, Benkeser D, Valim C, Griggs A, et al. Genetic diversity and protective efficacy of the RTS,S/AS01 malaria vaccine. N Engl J Med. 2015;373(21):2025–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. mal ERACGoV. A research agenda for malaria eradication: vaccines. PLoS Med. 2011;8(1):e1000398.

    Article  Google Scholar 

  55. Harverson G, Wilson ME. Assessment of current malarial endemicity in Bathurst, Gambia. West Afr Med J Niger Pract. 1968;17(3):63–7.

    CAS  PubMed  Google Scholar 

  56. Voller A, Bruce-Chwatt LJ. Serological malaria surveys in Nigeria. Bull World Health Organ. 1968;39(6):883–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Draper CC, Lelijveld JL, Matola YG, White GB. Malaria in the Pare area of Tanzania. IV. Malaria in the human population 11 years after the suspension of residual insecticide spraying, with special reference to the serological findings. Trans R Soc Trop Med Hyg. 1972;66(6):905–12.

    Article  CAS  PubMed  Google Scholar 

  58. Corran P, Coleman P, Riley E, Drakeley C. Serology: a robust indicator of malaria transmission intensity? Trends Parasitol. 2007;23(12):575–82.

    Article  PubMed  Google Scholar 

  59. Tusting LS, Bousema T, Smith DL, Drakeley C. Measuring changes in Plasmodium falciparum transmission: precision, accuracy and costs of metrics. Adv Parasitol. 2014;84:151–208.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Drakeley CJ, Corran PH, Coleman PG, Tongren JE, McDonald SL, Carneiro I, et al. Estimating medium- and long-term trends in malaria transmission by using serological markers of malaria exposure. Proc Natl Acad Sci U S A. 2005;102(14):5108–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193(4254):673–5.

    Article  CAS  PubMed  Google Scholar 

  62. Teo A, Feng G, Brown GV, Beeson JG, Rogerson SJ. Functional antibodies and protection against blood-stage malaria. Trends Parasitol. 2016;32(11):887–98.

    Article  CAS  PubMed  Google Scholar 

  63. Authors WC, Ahouidi AD, Amambua-Ngwa A, Awandare GA, Bei AK, Conway DJ, et al. Malaria vaccine development: focusing field erythrocyte invasion studies on phenotypic diversity: the West African Merozoite Invasion Network (WAMIN). Trends Parasitol. 2016;32(4):274–83.

    Article  Google Scholar 

  64. Miura K, Zhou H, Moretz SE, Diouf A, Thera MA, Dolo A, et al. Comparison of biological activity of human anti-apical membrane antigen-1 antibodies induced by natural infection and vaccination. J Immunol (Baltimore, MD: 1950). 2008;181(12):8776–83.

    Article  CAS  Google Scholar 

  65. Miura K, Deng B, Tullo G, Diouf A, Moretz SE, Locke E, et al. Qualification of standard membrane-feeding assay with Plasmodium falciparum malaria and potential improvements for future assays. PLoS One. 2013;8(3):e57909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Llewellyn D, Miura K, Fay MP, Williams AR, Murungi LM, Shi J, et al. Standardization of the antibody-dependent respiratory burst assay with human neutrophils and Plasmodium falciparum malaria. Sci Rep. 2015;5:14081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Murungi LM, Sonden K, Llewellyn D, Rono J, Guleid F, Williams AR, et al. Targets and mechanisms associated with protection from severe Plasmodium falciparum malaria in Kenyan children. Infect Immun. 2016;84(4):950–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sepulveda N, Stresman G, White MT, Drakeley CJ. Current mathematical models for analyzing anti-malarial antibody data with an eye to malaria elimination and eradication. J Immunol Res. 2015;2015:738030.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Ondigo BN, Hodges JS, Ireland KF, Magak NG, Lanar DE, Dutta S, et al. Estimation of recent and long-term malaria transmission in a population by antibody testing to multiple Plasmodium falciparum antigens. J Infect Dis. 2014;210(7):1123–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. van den Hoogen LL, Griffin JT, Cook J, Sepulveda N, Corran P, Conway DJ, et al. Serology describes a profile of declining malaria transmission in Farafenni. The Gambia Malar J. 2015;14(1):416.

    Article  PubMed  CAS  Google Scholar 

  71. Helb DA, Tetteh KK, Felgner PL, Skinner J, Hubbard A, Arinaitwe E, et al. Novel serologic biomarkers provide accurate estimates of recent Plasmodium falciparum exposure for individuals and communities. Proc Natl Acad Sci U S A. 2015;112(32):E4438–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Plucinski MM, Candrinho B, Chambe G, Muchanga J, Muguande O, Matsinhe G, et al. Multiplex serology for impact evaluation of bed net distribution on burden of lymphatic filariasis and four species of human malaria in northern Mozambique. PLoS Negl Trop Dis. 2018;12(2):e0006278.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Alonso PL, Brown G, Arevalo-Herrera M, Binka F, Chitnis C, Collins F, et al. A research agenda to underpin malaria eradication. PLoS Med. 2011;8(1):e1000406.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mackinnon MJ, Mwangi TW, Snow RW, Marsh K, Williams TN. Heritability of malaria in Africa. PLoS Med. 2005;2(12):e340.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Allison AC. The distribution of the sickle-cell trait in East Africa and elsewhere, and its apparent relationship to the incidence of subtertian malaria. Trans R Soc Trop Med Hyg. 1954;48(4):312–8.

    Article  CAS  PubMed  Google Scholar 

  76. Hill AV, Allsopp CE, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, et al. Common west African HLA antigens are associated with protection from severe malaria. Nature. 1991;352(6336):595–600.

    Article  CAS  PubMed  Google Scholar 

  77. Hill AV, Elvin J, Willis AC, Aidoo M, Allsopp CE, Gotch FM, et al. Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature. 1992;360(6403):434–9.

    Article  CAS  PubMed  Google Scholar 

  78. Nielsen CM, Vekemans J, Lievens M, Kester KE, Regules JA, Ockenhouse CF. RTS,S malaria vaccine efficacy and immunogenicity during Plasmodium falciparum challenge is associated with HLA genotype. Vaccine. 2018;36(12):1637–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kwiatkowski DP. How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet. 2005;77(2):171–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sjoberg K, Lepers JP, Raharimalala L, Larsson A, Olerup O, Marbiah NT, et al. Genetic regulation of human anti-malarial antibodies in twins. Proc Natl Acad Sci U S A. 1992;89(6):2101–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shelton JM, Corran P, Risley P, Silva N, Hubbart C, Jeffreys A, et al. Genetic determinants of anti-malarial acquired immunity in a large multi-centre study. Malar J. 2015;14:333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Gong L, Parikh S, Rosenthal PJ, Greenhouse B. Biochemical and immunological mechanisms by which sickle cell trait protects against malaria. Malar J. 2013;12:317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Arama C, Maiga B, Dolo A, Kouriba B, Traore B, Crompton PD, et al. Ethnic differences in susceptibility to malaria: what have we learned from immuno-epidemiological studies in West Africa? Acta Trop. 2015;146:152–6.

    Article  PubMed  Google Scholar 

  84. Tan J, Pieper K, Piccoli L, Abdi A, Foglierini M, Geiger R, et al. A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens. Nature. 2016;529(7584):105–9.

    Article  CAS  PubMed  Google Scholar 

  85. Obeng-Adjei N, Portugal S, Holla P, Li S, Sohn H, Ambegaonkar A, et al. Malaria-induced interferon-gamma drives the expansion of Tbethi atypical memory B cells. PLoS Pathog. 2017;13(9):e1006576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Illingworth J, Butler NS, Roetynck S, Mwacharo J, Pierce SK, Bejon P, et al. Chronic exposure to Plasmodium falciparum is associated with phenotypic evidence of B and T cell exhaustion. J Immunol. 2013;190(3):1038–47.

    Article  CAS  PubMed  Google Scholar 

  87. Portugal S, Tipton CM, Sohn H, Kone Y, Wang J, Li S, et al. Malaria-associated atypical memory B cells exhibit markedly reduced B cell receptor signaling and effector function. elife. 2015;4:e07218.

    Article  PubMed Central  CAS  Google Scholar 

  88. Bouharoun-Tayoun H, Druilhe P. Plasmodium falciparum malaria: evidence for an isotype imbalance which may be responsible for delayed acquisition of protective immunity. Infect Immun. 1992;60(4):1473–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Stanisic DI, Richards JS, McCallum FJ, Michon P, King CL, Schoepflin S, et al. Immunoglobulin G subclass-specific responses against Plasmodium falciparum merozoite antigens are associated with control of parasitemia and protection from symptomatic illness. Infect Immun. 2009;77(3):1165–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Alter G, Ottenhoff THM, Joosten SA. Antibody glycosylation in inflammation, disease and vaccination. Semin Immunol. 2018;39:102–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jennewein MF, Alter G. The immunoregulatory roles of antibody glycosylation. Trends Immunol. 2017;38(5):358–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy K. Bei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bei, A.K., Parikh, S. (2019). Immunoepidemiology of Plasmodium falciparum malaria. In: Krause, P., Kavathas, P., Ruddle, N. (eds) Immunoepidemiology. Springer, Cham. https://doi.org/10.1007/978-3-030-25553-4_12

Download citation

Publish with us

Policies and ethics