Advertisement

Immunoepidemiology of Human Immunodeficiency

Chapter
  • 412 Downloads

Abstract

Acquired immunodeficiency syndrome (AIDS) was officially acknowledged as a new disease in 1981 by the US Center for Disease Control and Prevention (CDC). The etiologic agent of AIDS is a retrovirus – human immunodeficiency virus type 1 (HIV-1). In 1986, the isolation of another retrovirus, HIV-2, in AIDS patients in West Africa provided a clue to the origin of HIV-1. HIV-1 and HIV-2 infections in humans resulted from zoonotic transfers of simian immunodeficiency viruses (SIVs) infecting chimpanzees (SIVcpz) and sooty mangabeys (SIVsmm), respectively. For SIVcpz to adapt to its new human hosts, the viral matrix protein came under intense host-specific immune selection pressure that resulted in an amino acid substitution (Met to Arg or Lys) in the viral matrix protein (Gag-30). This chapter focuses on how host immune factors modify susceptibility to HIV-1 infection, progression and severity of HIV-1 disease, and the likelihood of transmission of HIV-1 to another person. Some of the factors are genes encoding a chemokine receptor (the C-C motif receptor 5 gene [CCR5]), chemokine ligands, human major histocompatibility complex (MHC) class I human leukocyte antigen (HLA), human β-defensins, and apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3). Despite scientific advancements in the field of HIV-1 research in the last three decades, the search for cure and preventative vaccines for HIV-1 continues to elude the scientific community. A better understanding of the interactions between HIV-1, host restriction factors, and immune responses might provide drug targets for cure and a framework for vaccine initiatives.

Keywords

Human immunodeficiency virus type 1 and 2 (HIV-1 and HIV-2) Simian immunodeficiency virus (SIV) Host restriction factors Chemokine receptor Human major histocompatibility complex (MHC) Human leukocyte antigen (HLA) Genetic variants Cross-species transmission Resistance to infection Human primates 

References

  1. 1.
    Centers for Disease C. Kaposi’s sarcoma and Pneumocystis pneumonia among homosexual men–New York City and California. MMWR Morb Mortal Wkly Rep. 1981;30(25):305–8.Google Scholar
  2. 2.
    Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science. 1983;220(4599):868–71.PubMedCrossRefGoogle Scholar
  3. 3.
    Popovic M, Sarngadharan MG, Read E, Gallo RC. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science. 1984;224(4648):497–500.PubMedCrossRefGoogle Scholar
  4. 4.
    Clavel F, Guetard D, Brun-Vezinet F, Chamaret S, Rey MA, Santos-Ferreira MO, et al. Isolation of a new human retrovirus from West African patients with AIDS. Science. 1986;233(4761):343–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Chakrabarti L, Guyader M, Alizon M, Daniel MD, Desrosiers RC, Tiollais P, et al. Sequence of simian immunodeficiency virus from macaque and its relationship to other human and simian retroviruses. Nature. 1987;328(6130):543–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Sharp PM, Bailes E, Gao F, Beer BE, Hirsch VM, Hahn BH. Origins and evolution of AIDS viruses: estimating the time-scale. Biochem Soc Trans. 2000;28(2):275–82.PubMedCrossRefGoogle Scholar
  7. 7.
    Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med. 2011;1(1):a006841.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Daniel MD, Letvin NL, King NW, Kannagi M, Sehgal PK, Hunt RD, et al. Isolation of T-cell tropic HTLV-III-like retrovirus from macaques. Science. 1985;228(4704):1201–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Hahn BH, Shaw GM, De Cock KM, Sharp PM. AIDS as a zoonosis: scientific and public health implications. Science. 2000;287(5453):607–14.PubMedCrossRefGoogle Scholar
  10. 10.
    Katzourakis A, Tristem M, Pybus OG, Gifford RJ. Discovery and analysis of the first endogenous lentivirus. Proc Natl Acad Sci U S A. 2007;104(15):6261–5.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Aghokeng AF, Bailes E, Loul S, Courgnaud V, Mpoudi-Ngolle E, Sharp PM, et al. Full-length sequence analysis of SIVmus in wild populations of mustached monkeys (Cercopithecus cephus) from Cameroon provides evidence for two co-circulating SIVmus lineages. Virology. 2007;360(2):407–18.PubMedCrossRefGoogle Scholar
  12. 12.
    van Rensburg EJ, Engelbrecht S, Mwenda J, Laten JD, Robson BA, Stander T, et al. Simian immunodeficiency viruses (SIVs) from eastern and southern Africa: detection of a SIVagm variant from a chacma baboon. J Gen Virol. 1998;79(Pt 7):1809–14.PubMedCrossRefGoogle Scholar
  13. 13.
    Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature. 1999;397(6718):436–41.PubMedCrossRefGoogle Scholar
  14. 14.
    Hirsch VM, Dapolito G, Goeken R, Campbell BJ. Phylogeny and natural history of the primate lentiviruses, SIV and HIV. Curr Opin Genet Dev. 1995;5(6):798–806.PubMedCrossRefGoogle Scholar
  15. 15.
    Keele BF, Jones JH, Terio KA, Estes JD, Rudicell RS, Wilson ML, et al. Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature. 2009;460(7254):515–9.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Keele BF, Van Heuverswyn F, Li Y, Bailes E, Takehisa J, Santiago ML, et al. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science. 2006;313(5786):523–6.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Peeters M, Courgnaud V, Abela B, Auzel P, Pourrut X, Bibollet-Ruche F, et al. Risk to human health from a plethora of simian immunodeficiency viruses in primate bushmeat. Emerg Infect Dis. 2002;8(5):451–7.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Malim MH, Emerman M. HIV-1 accessory proteins--ensuring viral survival in a hostile environment. Cell Host Microbe. 2008;3(6):388–98.PubMedCrossRefGoogle Scholar
  19. 19.
    Kajaste-Rudnitski A, Pultrone C, Marzetta F, Ghezzi S, Coradin T, Vicenzi E. Restriction factors of retroviral replication: the example of Tripartite Motif (TRIM) protein 5 alpha and 22. Amino Acids. 2010;39(1):1–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Wain LV, Bailes E, Bibollet-Ruche F, Decker JM, Keele BF, Van Heuverswyn F, et al. Adaptation of HIV-1 to its human host. Mol Biol Evol. 2007;24(8):1853–60.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Mwaengo DM, Novembre FJ. Molecular cloning and characterization of viruses isolated from chimpanzees with pathogenic human immunodeficiency virus type 1 infections. J Virol. 1998;72(11):8976–87.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature. 2002;418(6898):646–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature. 2004;427(6977):848–53.PubMedCrossRefGoogle Scholar
  24. 24.
    Neil SJ, Zang T, Bieniasz PD. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature. 2008;451(7177):425–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Jia B, Serra-Moreno R, Neidermyer W, Rahmberg A, Mackey J, Fofana IB, et al. Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2. PLoS Pathog. 2009;5(5):e1000429.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Iwabu Y, Fujita H, Kinomoto M, Kaneko K, Ishizaka Y, Tanaka Y, et al. HIV-1 accessory protein Vpu internalizes cell-surface BST-2/tetherin through transmembrane interactions leading to lysosomes. J Biol Chem. 2009;284(50):35060–72.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Bour S, Schubert U, Peden K, Strebel K. The envelope glycoprotein of human immunodeficiency virus type 2 enhances viral particle release: a Vpu-like factor? J Virol. 1996;70(2):820–9.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Gupta RK, Mlcochova P, Pelchen-Matthews A, Petit SJ, Mattiuzzo G, Pillay D, et al. Simian immunodeficiency virus envelope glycoprotein counteracts tetherin/BST-2/CD317 by intracellular sequestration. Proc Natl Acad Sci U S A. 2009;106(49):20889–94.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Sauter C. Adjuvant therapy for breast cancer. N Engl J Med. 1994;331(11):742; author reply 4–5.PubMedGoogle Scholar
  30. 30.
    Horton RE, McLaren PJ, Fowke K, Kimani J, Ball TB. Cohorts for the study of HIV-1-exposed but uninfected individuals: benefits and limitations. J Infect Dis. 2010;202(Suppl 3):S377–81.PubMedCrossRefGoogle Scholar
  31. 31.
    Detels R, Liu Z, Hennessey K, Kan J, Visscher BR, Taylor JM, et al. Resistance to HIV-1 infection. Multicenter AIDS Cohort Study. J Acquir Immune Defic Syndr. 1994;7(12):1263–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science. 1996;273(5283):1856–62.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kroner BL, Rosenberg PS, Aledort LM, Alvord WG, Goedert JJ. HIV-1 infection incidence among persons with hemophilia in the United States and western Europe, 1978–1990. Multicenter Hemophilia Cohort Study. J Acquir Immune Defic Syndr. 1994;7(3):279–86.PubMedGoogle Scholar
  34. 34.
    Osbourn JK, Earnshaw JC, Johnson KS, Parmentier M, Timmermans V, McCafferty J. Directed selection of MIP-1 alpha neutralizing CCR5 antibodies from a phage display human antibody library. Nat Biotechnol. 1998;16(8):778–81.PubMedCrossRefGoogle Scholar
  35. 35.
    Signoret N, Pelchen-Matthews A, Mack M, Proudfoot AE, Marsh M. Endocytosis and recycling of the HIV coreceptor CCR5. J Cell Biol. 2000;151(6):1281–94.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kaul R, Rowland-Jones SL, Kimani J, Dong T, Yang HB, Kiama P, et al. Late seroconversion in HIV-resistant Nairobi prostitutes despite pre-existing HIV-specific CD8+ responses. J Clin Invest. 2001;107(3):341–9.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Mazzoli S, Trabattoni D, Lo Caputo S, Piconi S, Ble C, Meacci F, et al. HIV-specific mucosal and cellular immunity in HIV-seronegative partners of HIV-seropositive individuals. Nat Med. 1997;3(11):1250–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Devito C, Hinkula J, Kaul R, Lopalco L, Bwayo JJ, Plummer F, et al. Mucosal and plasma IgA from HIV-exposed seronegative individuals neutralize a primary HIV-1 isolate. AIDS. 2000;14(13):1917–20.PubMedCrossRefGoogle Scholar
  39. 39.
    Bryson YJ, Luzuriaga K, Sullivan JL, Wara DW. Proposed definitions for in utero versus intrapartum transmission of HIV-1. N Engl J Med. 1992;327(17):1246–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Paintsil E, Andiman WA. Update on successes and challenges regarding mother-to-child transmission of HIV. Curr Opin Pediatr. 2009;21(1):94–101.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    MacDonald KS, Embree J, Njenga S, Nagelkerke NJ, Ngatia I, Mohammed Z, et al. Mother-child class I HLA concordance increases perinatal human immunodeficiency virus type 1 transmission. J Infect Dis. 1998;177(3):551–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Mackelprang RD, Carrington M, John-Stewart G, Lohman-Payne B, Richardson BA, Wamalwa D, et al. Maternal human leukocyte antigen A∗2301 is associated with increased mother-to-child HIV-1 transmission. J Infect Dis. 2010;202(8):1273–7.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Braida L, Boniotto M, Pontillo A, Tovo PA, Amoroso A, Crovella S. A single-nucleotide polymorphism in the human beta-defensin 1 gene is associated with HIV-1 infection in Italian children. AIDS. 2004;18(11):1598–600.PubMedCrossRefGoogle Scholar
  44. 44.
    Milanese M, Segat L, Pontillo A, Arraes LC, de Lima Filho JL, Crovella S. DEFB1 gene polymorphisms and increased risk of HIV-1 infection in Brazilian children. AIDS. 2006;20(12):1673–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Ricci E, Malacrida S, Zanchetta M, Montagna M, Giaquinto C, De Rossi A. Role of beta-defensin-1 polymorphisms in mother-to-child transmission of HIV-1. J Acquir Immune Defic Syndr. 2009;51(1):13–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Pazgier M, Hoover DM, Yang D, Lu W, Lubkowski J. Human beta-defensins. Cell Mol Life Sci. 2006;63(11):1294–313.CrossRefPubMedGoogle Scholar
  47. 47.
    Samleerat T, Thenin S, Jourdain G, Ngo-Giang-Huong N, Moreau A, Leechanachai P, et al. Maternal neutralizing antibodies against a CRF01_AE primary isolate are associated with a low rate of intrapartum HIV-1 transmission. Virology. 2009;387(2):388–94.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Barin F, Jourdain G, Brunet S, Ngo-Giang-Huong N, Weerawatgoompa S, Karnchanamayul W, et al. Revisiting the role of neutralizing antibodies in mother-to-child transmission of HIV-1. J Infect Dis. 2006;193(11):1504–11.PubMedCrossRefGoogle Scholar
  49. 49.
    Wu X, Parast AB, Richardson BA, Nduati R, John-Stewart G, Mbori-Ngacha D, et al. Neutralization escape variants of human immunodeficiency virus type 1 are transmitted from mother to infant. J Virol. 2006;80(2):835–44.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Persaud D, Gay H, Ziemniak C, Chen YH, Piatak M Jr, Chun TW, et al. Absence of detectable HIV-1 viremia after treatment cessation in an infant. N Engl J Med. 2013;369(19):1828–35.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360(7):692–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Gupta RK, Abdul-Jawad S, McCoy LE, Mok HP, Peppa D, Salgado M, et al. HIV-1 remission following CCR5Delta32/Delta32 haematopoietic stem-cell transplantation. Nature. 2019;568:244.PubMedCrossRefGoogle Scholar
  53. 53.
    An P, Winkler CA. Host genes associated with HIV/AIDS: advances in gene discovery. Trends Genet. 2010;26(3):119–31.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departments of Pediatrics, Pharmacology, and Epidemiology of Microbial DiseasesYale School of Medicine and Yale School of Public HealthNew HavenUSA

Personalised recommendations