Immunoepidemiology pp 165-178 | Cite as
Immunoepidemiology of Human Immunodeficiency
- 412 Downloads
Abstract
Acquired immunodeficiency syndrome (AIDS) was officially acknowledged as a new disease in 1981 by the US Center for Disease Control and Prevention (CDC). The etiologic agent of AIDS is a retrovirus – human immunodeficiency virus type 1 (HIV-1). In 1986, the isolation of another retrovirus, HIV-2, in AIDS patients in West Africa provided a clue to the origin of HIV-1. HIV-1 and HIV-2 infections in humans resulted from zoonotic transfers of simian immunodeficiency viruses (SIVs) infecting chimpanzees (SIVcpz) and sooty mangabeys (SIVsmm), respectively. For SIVcpz to adapt to its new human hosts, the viral matrix protein came under intense host-specific immune selection pressure that resulted in an amino acid substitution (Met to Arg or Lys) in the viral matrix protein (Gag-30). This chapter focuses on how host immune factors modify susceptibility to HIV-1 infection, progression and severity of HIV-1 disease, and the likelihood of transmission of HIV-1 to another person. Some of the factors are genes encoding a chemokine receptor (the C-C motif receptor 5 gene [CCR5]), chemokine ligands, human major histocompatibility complex (MHC) class I human leukocyte antigen (HLA), human β-defensins, and apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3). Despite scientific advancements in the field of HIV-1 research in the last three decades, the search for cure and preventative vaccines for HIV-1 continues to elude the scientific community. A better understanding of the interactions between HIV-1, host restriction factors, and immune responses might provide drug targets for cure and a framework for vaccine initiatives.
Keywords
Human immunodeficiency virus type 1 and 2 (HIV-1 and HIV-2) Simian immunodeficiency virus (SIV) Host restriction factors Chemokine receptor Human major histocompatibility complex (MHC) Human leukocyte antigen (HLA) Genetic variants Cross-species transmission Resistance to infection Human primatesReferences
- 1.Centers for Disease C. Kaposi’s sarcoma and Pneumocystis pneumonia among homosexual men–New York City and California. MMWR Morb Mortal Wkly Rep. 1981;30(25):305–8.Google Scholar
- 2.Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science. 1983;220(4599):868–71.PubMedCrossRefGoogle Scholar
- 3.Popovic M, Sarngadharan MG, Read E, Gallo RC. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science. 1984;224(4648):497–500.PubMedCrossRefGoogle Scholar
- 4.Clavel F, Guetard D, Brun-Vezinet F, Chamaret S, Rey MA, Santos-Ferreira MO, et al. Isolation of a new human retrovirus from West African patients with AIDS. Science. 1986;233(4761):343–6.PubMedCrossRefGoogle Scholar
- 5.Chakrabarti L, Guyader M, Alizon M, Daniel MD, Desrosiers RC, Tiollais P, et al. Sequence of simian immunodeficiency virus from macaque and its relationship to other human and simian retroviruses. Nature. 1987;328(6130):543–7.PubMedCrossRefGoogle Scholar
- 6.Sharp PM, Bailes E, Gao F, Beer BE, Hirsch VM, Hahn BH. Origins and evolution of AIDS viruses: estimating the time-scale. Biochem Soc Trans. 2000;28(2):275–82.PubMedCrossRefGoogle Scholar
- 7.Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med. 2011;1(1):a006841.PubMedPubMedCentralCrossRefGoogle Scholar
- 8.Daniel MD, Letvin NL, King NW, Kannagi M, Sehgal PK, Hunt RD, et al. Isolation of T-cell tropic HTLV-III-like retrovirus from macaques. Science. 1985;228(4704):1201–4.PubMedCrossRefGoogle Scholar
- 9.Hahn BH, Shaw GM, De Cock KM, Sharp PM. AIDS as a zoonosis: scientific and public health implications. Science. 2000;287(5453):607–14.PubMedCrossRefGoogle Scholar
- 10.Katzourakis A, Tristem M, Pybus OG, Gifford RJ. Discovery and analysis of the first endogenous lentivirus. Proc Natl Acad Sci U S A. 2007;104(15):6261–5.PubMedPubMedCentralCrossRefGoogle Scholar
- 11.Aghokeng AF, Bailes E, Loul S, Courgnaud V, Mpoudi-Ngolle E, Sharp PM, et al. Full-length sequence analysis of SIVmus in wild populations of mustached monkeys (Cercopithecus cephus) from Cameroon provides evidence for two co-circulating SIVmus lineages. Virology. 2007;360(2):407–18.PubMedCrossRefGoogle Scholar
- 12.van Rensburg EJ, Engelbrecht S, Mwenda J, Laten JD, Robson BA, Stander T, et al. Simian immunodeficiency viruses (SIVs) from eastern and southern Africa: detection of a SIVagm variant from a chacma baboon. J Gen Virol. 1998;79(Pt 7):1809–14.PubMedCrossRefGoogle Scholar
- 13.Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature. 1999;397(6718):436–41.PubMedCrossRefGoogle Scholar
- 14.Hirsch VM, Dapolito G, Goeken R, Campbell BJ. Phylogeny and natural history of the primate lentiviruses, SIV and HIV. Curr Opin Genet Dev. 1995;5(6):798–806.PubMedCrossRefGoogle Scholar
- 15.Keele BF, Jones JH, Terio KA, Estes JD, Rudicell RS, Wilson ML, et al. Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature. 2009;460(7254):515–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 16.Keele BF, Van Heuverswyn F, Li Y, Bailes E, Takehisa J, Santiago ML, et al. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science. 2006;313(5786):523–6.PubMedPubMedCentralCrossRefGoogle Scholar
- 17.Peeters M, Courgnaud V, Abela B, Auzel P, Pourrut X, Bibollet-Ruche F, et al. Risk to human health from a plethora of simian immunodeficiency viruses in primate bushmeat. Emerg Infect Dis. 2002;8(5):451–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 18.Malim MH, Emerman M. HIV-1 accessory proteins--ensuring viral survival in a hostile environment. Cell Host Microbe. 2008;3(6):388–98.PubMedCrossRefGoogle Scholar
- 19.Kajaste-Rudnitski A, Pultrone C, Marzetta F, Ghezzi S, Coradin T, Vicenzi E. Restriction factors of retroviral replication: the example of Tripartite Motif (TRIM) protein 5 alpha and 22. Amino Acids. 2010;39(1):1–9.PubMedCrossRefGoogle Scholar
- 20.Wain LV, Bailes E, Bibollet-Ruche F, Decker JM, Keele BF, Van Heuverswyn F, et al. Adaptation of HIV-1 to its human host. Mol Biol Evol. 2007;24(8):1853–60.PubMedPubMedCentralCrossRefGoogle Scholar
- 21.Mwaengo DM, Novembre FJ. Molecular cloning and characterization of viruses isolated from chimpanzees with pathogenic human immunodeficiency virus type 1 infections. J Virol. 1998;72(11):8976–87.PubMedPubMedCentralGoogle Scholar
- 22.Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature. 2002;418(6898):646–50.PubMedCrossRefGoogle Scholar
- 23.Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature. 2004;427(6977):848–53.PubMedCrossRefGoogle Scholar
- 24.Neil SJ, Zang T, Bieniasz PD. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature. 2008;451(7177):425–30.PubMedCrossRefGoogle Scholar
- 25.Jia B, Serra-Moreno R, Neidermyer W, Rahmberg A, Mackey J, Fofana IB, et al. Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2. PLoS Pathog. 2009;5(5):e1000429.PubMedPubMedCentralCrossRefGoogle Scholar
- 26.Iwabu Y, Fujita H, Kinomoto M, Kaneko K, Ishizaka Y, Tanaka Y, et al. HIV-1 accessory protein Vpu internalizes cell-surface BST-2/tetherin through transmembrane interactions leading to lysosomes. J Biol Chem. 2009;284(50):35060–72.PubMedPubMedCentralCrossRefGoogle Scholar
- 27.Bour S, Schubert U, Peden K, Strebel K. The envelope glycoprotein of human immunodeficiency virus type 2 enhances viral particle release: a Vpu-like factor? J Virol. 1996;70(2):820–9.PubMedPubMedCentralGoogle Scholar
- 28.Gupta RK, Mlcochova P, Pelchen-Matthews A, Petit SJ, Mattiuzzo G, Pillay D, et al. Simian immunodeficiency virus envelope glycoprotein counteracts tetherin/BST-2/CD317 by intracellular sequestration. Proc Natl Acad Sci U S A. 2009;106(49):20889–94.PubMedPubMedCentralCrossRefGoogle Scholar
- 29.Sauter C. Adjuvant therapy for breast cancer. N Engl J Med. 1994;331(11):742; author reply 4–5.PubMedGoogle Scholar
- 30.Horton RE, McLaren PJ, Fowke K, Kimani J, Ball TB. Cohorts for the study of HIV-1-exposed but uninfected individuals: benefits and limitations. J Infect Dis. 2010;202(Suppl 3):S377–81.PubMedCrossRefGoogle Scholar
- 31.Detels R, Liu Z, Hennessey K, Kan J, Visscher BR, Taylor JM, et al. Resistance to HIV-1 infection. Multicenter AIDS Cohort Study. J Acquir Immune Defic Syndr. 1994;7(12):1263–9.PubMedCrossRefGoogle Scholar
- 32.Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science. 1996;273(5283):1856–62.PubMedPubMedCentralCrossRefGoogle Scholar
- 33.Kroner BL, Rosenberg PS, Aledort LM, Alvord WG, Goedert JJ. HIV-1 infection incidence among persons with hemophilia in the United States and western Europe, 1978–1990. Multicenter Hemophilia Cohort Study. J Acquir Immune Defic Syndr. 1994;7(3):279–86.PubMedGoogle Scholar
- 34.Osbourn JK, Earnshaw JC, Johnson KS, Parmentier M, Timmermans V, McCafferty J. Directed selection of MIP-1 alpha neutralizing CCR5 antibodies from a phage display human antibody library. Nat Biotechnol. 1998;16(8):778–81.PubMedCrossRefGoogle Scholar
- 35.Signoret N, Pelchen-Matthews A, Mack M, Proudfoot AE, Marsh M. Endocytosis and recycling of the HIV coreceptor CCR5. J Cell Biol. 2000;151(6):1281–94.PubMedPubMedCentralCrossRefGoogle Scholar
- 36.Kaul R, Rowland-Jones SL, Kimani J, Dong T, Yang HB, Kiama P, et al. Late seroconversion in HIV-resistant Nairobi prostitutes despite pre-existing HIV-specific CD8+ responses. J Clin Invest. 2001;107(3):341–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 37.Mazzoli S, Trabattoni D, Lo Caputo S, Piconi S, Ble C, Meacci F, et al. HIV-specific mucosal and cellular immunity in HIV-seronegative partners of HIV-seropositive individuals. Nat Med. 1997;3(11):1250–7.PubMedCrossRefGoogle Scholar
- 38.Devito C, Hinkula J, Kaul R, Lopalco L, Bwayo JJ, Plummer F, et al. Mucosal and plasma IgA from HIV-exposed seronegative individuals neutralize a primary HIV-1 isolate. AIDS. 2000;14(13):1917–20.PubMedCrossRefGoogle Scholar
- 39.Bryson YJ, Luzuriaga K, Sullivan JL, Wara DW. Proposed definitions for in utero versus intrapartum transmission of HIV-1. N Engl J Med. 1992;327(17):1246–7.PubMedCrossRefGoogle Scholar
- 40.Paintsil E, Andiman WA. Update on successes and challenges regarding mother-to-child transmission of HIV. Curr Opin Pediatr. 2009;21(1):94–101.PubMedPubMedCentralCrossRefGoogle Scholar
- 41.MacDonald KS, Embree J, Njenga S, Nagelkerke NJ, Ngatia I, Mohammed Z, et al. Mother-child class I HLA concordance increases perinatal human immunodeficiency virus type 1 transmission. J Infect Dis. 1998;177(3):551–6.PubMedCrossRefGoogle Scholar
- 42.Mackelprang RD, Carrington M, John-Stewart G, Lohman-Payne B, Richardson BA, Wamalwa D, et al. Maternal human leukocyte antigen A∗2301 is associated with increased mother-to-child HIV-1 transmission. J Infect Dis. 2010;202(8):1273–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 43.Braida L, Boniotto M, Pontillo A, Tovo PA, Amoroso A, Crovella S. A single-nucleotide polymorphism in the human beta-defensin 1 gene is associated with HIV-1 infection in Italian children. AIDS. 2004;18(11):1598–600.PubMedCrossRefGoogle Scholar
- 44.Milanese M, Segat L, Pontillo A, Arraes LC, de Lima Filho JL, Crovella S. DEFB1 gene polymorphisms and increased risk of HIV-1 infection in Brazilian children. AIDS. 2006;20(12):1673–5.PubMedCrossRefGoogle Scholar
- 45.Ricci E, Malacrida S, Zanchetta M, Montagna M, Giaquinto C, De Rossi A. Role of beta-defensin-1 polymorphisms in mother-to-child transmission of HIV-1. J Acquir Immune Defic Syndr. 2009;51(1):13–9.PubMedCrossRefGoogle Scholar
- 46.Pazgier M, Hoover DM, Yang D, Lu W, Lubkowski J. Human beta-defensins. Cell Mol Life Sci. 2006;63(11):1294–313.CrossRefPubMedGoogle Scholar
- 47.Samleerat T, Thenin S, Jourdain G, Ngo-Giang-Huong N, Moreau A, Leechanachai P, et al. Maternal neutralizing antibodies against a CRF01_AE primary isolate are associated with a low rate of intrapartum HIV-1 transmission. Virology. 2009;387(2):388–94.PubMedPubMedCentralCrossRefGoogle Scholar
- 48.Barin F, Jourdain G, Brunet S, Ngo-Giang-Huong N, Weerawatgoompa S, Karnchanamayul W, et al. Revisiting the role of neutralizing antibodies in mother-to-child transmission of HIV-1. J Infect Dis. 2006;193(11):1504–11.PubMedCrossRefGoogle Scholar
- 49.Wu X, Parast AB, Richardson BA, Nduati R, John-Stewart G, Mbori-Ngacha D, et al. Neutralization escape variants of human immunodeficiency virus type 1 are transmitted from mother to infant. J Virol. 2006;80(2):835–44.PubMedPubMedCentralCrossRefGoogle Scholar
- 50.Persaud D, Gay H, Ziemniak C, Chen YH, Piatak M Jr, Chun TW, et al. Absence of detectable HIV-1 viremia after treatment cessation in an infant. N Engl J Med. 2013;369(19):1828–35.PubMedPubMedCentralCrossRefGoogle Scholar
- 51.Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360(7):692–8.PubMedCrossRefGoogle Scholar
- 52.Gupta RK, Abdul-Jawad S, McCoy LE, Mok HP, Peppa D, Salgado M, et al. HIV-1 remission following CCR5Delta32/Delta32 haematopoietic stem-cell transplantation. Nature. 2019;568:244.PubMedCrossRefGoogle Scholar
- 53.An P, Winkler CA. Host genes associated with HIV/AIDS: advances in gene discovery. Trends Genet. 2010;26(3):119–31.PubMedPubMedCentralCrossRefGoogle Scholar