Skip to main content

Industrial Applications & Related Concepts

  • Chapter
  • First Online:
Substructuring in Engineering Dynamics

Abstract

This section highlights some specialized substructuring methods, such as methods for estimating the fixed-interface modes of a substructure from measurements of the free–free structure with a fixture attached at the interface, and also highlights some industrial examples. Transfer path analysis is reviewed, elaborating some of the similarities in the theoretical foundations. Most information about TPA has been obtained from van der Seijs et al. (2016), please refer to the original paper for a more elaborate discussion. — Chapter Authors: Maarten van der Seijs, Randall Mayes and Matt Allen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The signed Boolean matrix \(\mathbf {B}\) establishes the relations for all interface DoFs of A and B that are vectorially associated, e.g. \(u^\text {A}_{2x}\) and \(u^\text {B}_{2x}\). Guidelines on the construction and properties of the signed Boolean matrix are found in de Klerk et al. (2008).

  2. 2.

    In this framework, the resulting responses \(\mathbf {u}_3\) are formulated as a matrix-vector product, namely the sum of the partial responses. Techniques to evaluate the individual transfer paths contributions are discussed in van der Seijs et al. (2016).

  3. 3.

    Note that the terms in the dynamic stiffness matrix \(\mathbf {Z}^\text {mt}\) correspond to differential displacements of the associated interface DoFs \(\mathbf {u}^\text {A}_2 - \mathbf {u}^\text {B}_2\) and not the coordinates of both A and B. Some implications for the terms in \(\mathbf {Z}^\text {mt}\) are discussed in Voormeeren (2012), Barten et al. (2014).

  4. 4.

    If the admittances of the subsystems are available separately, one may also apply the free velocities directly, as shown in van Schothorst et al. (2012), Rixen et al. (2015).

  5. 5.

    A intuitive presentation of the range between the two limit cases is given in Moorhouse (2001).

  6. 6.

    This is standard practice for FEM assembly.

  7. 7.

    Similar ideas are used in the field of experimental substructure decoupling: the identification of the force that decouples the residual substructure can be improved by defining an “extended interface”, adding some additional DoFs on the structure of interest distant from the interface (Sjövall and Abrahamsson 2008; D’Ambrogio and Fregolent 2010; Voormeeren and Rixen 2012).

  8. 8.

    This was erroneously stated in the original work (Janssens and Verheij 2000).

  9. 9.

    An example with two connection points was chosen here merely to provide better insight into some important cross-correlation properties. There is no fundamental consequence for the generality of the methods derived.

  10. 10.

    This decorrelation has been approached in several ways: for instance, based on so-called Global and Direct Transmissibility Functions (GTDT) in the work of Magrans (1981), Guasch and Magrans (2004); Guasch (2009); Guasch et al. (2013) or along conventional FRFs as seen in Varoto and McConnell (1998), Ribeiro et al. (1999, 2000), Maia et al. (2001).

  11. 11.

    In Roozen and Leclère (2013), it is suggested that external excitation on the source structure, e.g. by use of a non-instrumented hammer, leads to better conditioning of the transmissibility matrix compared to a sequence of operational excitations. This resembles the approach depicted by Fig. 5.7b.

  12. 12.

    The \(H_1\) estimator is a well-known principle in experimental modal analysis to determine FRFs from a Multiple Input–Output (MIMO) test, see for instance, Bendat and Piersol (1980), Ewins (2000). Alternative ways to obtain the transmissibility matrix have recently been explored, such as the \(H_2\) or \(H_s\) estimator to balance the error contributions between the inputs and outputs (Leclère et al. 2012).

References

  • Abrahamsson, T. J. S. (2019). FEMcali (Finite element model calibration). https://www.mathworks.com/matlabcentral/fileexchange/

  • Allemang, R., Brown, D. L. (1982). A correlation coefficient for modal vector analysis.

    Google Scholar 

  • Barten, E., van der Seijs, M.V., de Klerk, D. (2014). A complex power approach to characterise joints in experimental dynamic substructuring. In Dynamics of Coupled Structures, Proceedings of the 32nd IMAC, A Conference and Exposition on Structural Dynamics (Vol. 1, pp. 281–296), Chap. 27. New York: Springer. https://doi.org/10.1007/978-3-319-04501-6_27.

    Chapter  Google Scholar 

  • Bendat, J. S., & Piersol, A. G. (1980). Engineering applications of correlation and spectral analysis. New York: Wiley Inc.

    MATH  Google Scholar 

  • Bisplinghoff, R. L., Ashley, H., & Halfman, R. L. (1955). Aeroelasticity. Cambridge: Addison-Wesley Publishing Company.

    MATH  Google Scholar 

  • Bonhoff, H. A. (2010). The influence and significance of cross-order terms in interface mobilities for structure-borne sound source characterization. Ph.D. thesis, Technische Universität Berlin

    Google Scholar 

  • Bylin, A. (2018). Dynamic substructuring using experimental-analytical state-space models of automotive components. Master’s thesis, Chalmers University of Technology, Dept Mechanics and Maritime Sciences, report 2018:69.

    Google Scholar 

  • Bylin, A., Gibanica, M., & Abrahamsson, T. J. S. (2018). Experimental-analytical state-space synthesis of a body-in-white and rear subframe.

    Google Scholar 

  • Cerrato, G. (2009). Automotive sound quality – powertrain, road and wind noise. Sound and Vibration, 43(4), 16–24. http://www.sandv.com/downloads/0904cerr.pdf.

  • Choi, H. G., Thite, A. N., & Thompson, D. J. (2007). Comparison of methods for parameter selection in Tikhonov regularization with application to inverse force determination. Journal of Sound and Vibration, 304(3), 894–917. https://doi.org/10.1016/j.jsv.2007.03.040.

    Article  Google Scholar 

  • D’Ambrogio, W., & Fregolent, A. (2010). The role of interface DoFs in decoupling of substructures based on the dual domain decomposition. Mechanical Systems and Signal Processing, 24(7), 2035–2048. https://doi.org/10.1016/j.ymssp.2010.05.007.

    Article  Google Scholar 

  • de Klerk, D., & Ossipov, A. (2010). Operational transfer path analysis: Theory, guidelines and tire noise application. Mechanical Systems and Signal Processing, 24(7), 1950–1962. https://doi.org/10.1016/j.ymssp.2010.05.009. Special Issue: ISMA 2010.

    Article  Google Scholar 

  • de Klerk, D., & Rixen, D. J. (2010). Component transfer path analysis method with compensation for test bench dynamics. Mechanical Systems and Signal Processing, 24(6), 1693–1710. https://doi.org/10.1016/j.ymssp.2010.01.006.

    Article  Google Scholar 

  • de Klerk, D., Rixen, D. J., & Voormeeren, S. N. (2008). General framework for dynamic substructuring: History, review and classifcation of techniques. AIAA Journal, 46(8), 1169–1181. https://doi.org/10.2514/1.33274.

    Article  Google Scholar 

  • de Klerk, D. (2009). Dynamic response characterization of complex systems through operational identification and dynamic substructuring. Ph.D. thesis, Delft University of Technology, The Netherlands. http://resolver.tudelft.nl/uuid:2e4dd63e-68d5-41a4-8201-1e784f2f752c

  • de Klerk, D., Lohrmann, M., Quickert, M., & Foken, W. (2009). Application of operational transfer path analysis on a classic car. In DAGA. Rotterdam.

    Google Scholar 

  • Dobson, B. J., & Rider, E. (1990). A review of the indirect calculation of excitation forces from measured structural response data. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 204(2), 69–75. https://doi.org/10.1243/PIME_PROC_1990_204_080_02.

    Article  Google Scholar 

  • dos Santos, F. L. M., Peeters, B., Lau, J., & Desmet, W., Góes, L. C. S. (2014). An overview of experimental strain-based modal analysis methods. In Proceedings of the International Conference on Noise and Vibration Engineering (ISMA). Leuven, Belgium

    Google Scholar 

  • Elliott, A. S. (2009). Characterisation of structure borne sound source in-situ. Ph.D. thesis, University of Salford. http://usir.salford.ac.uk/id/eprint/26661.

  • Elliott, A. S., & Moorhouse, A. T. (2008). Characterisation of structure borne sound sources from measurement in-situ. Journal of the Acoustical Society of America, 123(5), 3176. https://doi.org/10.1121/1.2933261.

    Article  Google Scholar 

  • Elliott, A. S., Moorhouse, A. T., Huntley, T., & Tate, S. (2013). In-situ source path contribution analysis of structure borne road noise. Journal of Sound and Vibration, 332(24), 6276–6295. https://doi.org/10.1016/j.jsv.2013.05.031.

    Article  Google Scholar 

  • Ewins, D. J. (2000). Modal testing: Theory, practice and application (2nd ed.). New York: Wiley Inc.

    Google Scholar 

  • Fahy, F. J. (1995). The vibro-acoustic reciprocity principle and applications to noise control. Acta Acustica United with Acustica, 81(6), 544–558.

    Google Scholar 

  • Fahy, F. J. (2003). Some applications of the reciprocity principle in experimental vibroacoustics. Acoustical Physics, 49(2), 217–229. https://doi.org/10.1134/1.1560385.

    Article  Google Scholar 

  • Gajdatsy, P., Janssens, K., Gielen, L., Mas, P., & Van der Auweraer, H. (2008). Critical assessment of operational path analysis: effect of neglected paths. In Proceedings of the XV International Congress on Sound and Vibration (ICSV) (pp. 1090–1097). Daejeon, Korea.

    Google Scholar 

  • Gajdatsy, P., Janssens, K., Gielen, L., Mas, P., & Van Der Auweraer, H. (2008). Critical assessment of operational path analysis: Effect of coupling between path inputs. Journal of the Acoustical Society of America, 123(5), 3876. https://doi.org/10.1121/1.2935777.

    Article  Google Scholar 

  • Gaudin, A., & Beniguel, J. F. (2012). Low frequency road noise decomposition at wheel center on an roller bench. In Acoustics 2012. Société Française d’Acoustique, Nantes, France. https://hal.archives-ouvertes.fr/hal-00811236.

  • Gibanica, M., & Abrahamsson, T. J. S. (2017). Parameter estimation and uncertainty quantification of a subframe with mass loaded bushings. In R. B. (Ed.), Proceedings of 32nd IEEE Conference on Decision and Control (Vol. 3, pp. 61–76). Berlin: Springer International Publishing.

    Google Scholar 

  • Gibanica, M., Abrahamsson, T. J. S., & Allemang, R. J. (2018). Residual states for modal models indentified from accelerance data. In: M. Maines & B. Dilworth (Eds.), Topics in modal analysis and testing (Vol. 9). Berlin: Springer International Publishing.

    Google Scholar 

  • Gibanica, M., Abrahamsson, T. J. S., Kammer, D. C. (2016). Redundant information rejection in sensor localisation using system gramians. In: M. Mains (ed.) Topics in modal analysis and testing (Vol. 10). Berlin: Springer International Publishing.

    Chapter  Google Scholar 

  • Ginsberg, J. H. (2001). Mechanical and structural vibrations (1st ed.). New York: Wiley.

    Google Scholar 

  • Guasch, O. (2009). Direct transfer functions and path blocking in a discrete mechanical system. Journal of Sound and Vibration, 321(3), 854–874. https://doi.org/10.1016/j.jsv.2008.10.006.

    Article  MathSciNet  Google Scholar 

  • Guasch, O., & Magrans, F. X. (2004). The global transfer direct transfer method applied to a finite simply supported elastic beam. Journal of Sound and Vibration, 276(1), 335–359. https://doi.org/10.1016/j.jsv.2003.07.032.

    Article  Google Scholar 

  • Guasch, O., García, C., Jové, J., & Artís, P. (2013). Experimental validation of the direct transmissibility approach to classical transfer path analysis on a mechanical setup. Mechanical Systems and Signal Processing, 37(1), 353–369. https://doi.org/10.1016/j.ymssp.2013.01.006.

    Article  Google Scholar 

  • Harrison, M., Sykes, A. O., & Martin, M. (1952). Wave effects in isolation mounts. Journal of the Acoustical Society of America, 24(1), 62–71. https://doi.org/10.1121/1.1906850.

    Article  Google Scholar 

  • Hixson, E. L. (1961). Mechanical impedance and mobility. In: C. M. Harris & C. E. Crede (Eds.), Shock and vibration handbook (1st ed., pp. 1–59), Chap. 10. New York: McGraw-Hill.

    Google Scholar 

  • ISO Technical Committee 43/Subcommittee 1/Workgroup 22 (ISO/TC43/SC1/WG22) (2015). Measurement of noise emitted by accelerating road vehicles – Engineering method – Part 1: M and N categories. ISO 362-1, International Standards Organisation.

    Google Scholar 

  • ISO Technical Committee 43/Subcommittee 1/Workgroup 22 (ISO/TC43/SC1/WG22). (1996). Acoustics – Characterization of sources of structure-borne sound with respect to sound radiation from connected structures – Measurement of velocity at the contact points of machinery when resiliently mounted. ISO 9611, International Standards Organisation.

    Google Scholar 

  • Janssens, M. H. A., & Verheij, J. W. (2000). A pseudo-forces methodology to be used in characterization of structure-borne sound sources. Applied Acoustics, 61(3), 285–308. https://doi.org/10.1016/S0003-682X(00)00035-9.

    Article  Google Scholar 

  • Janssens, M. H. A., Verheij, J. W., & Thompson, D. J. (1999). The use of an equivalent forces method for the experimental quantification of structural sound transmission in ships. Journal of Sound and Vibration, 226(2), 305–328. https://doi.org/10.1006/jsvi.1999.2303.

    Article  Google Scholar 

  • Janssens, M. H. A., Verheij, J. W., & Loyau, T. (2002). Experimental example of the pseudo-forces method used in characterisation of a structure-borne sound source. Applied Acoustics, 63(1), 9–34. https://doi.org/10.1016/S0003-682X(01)00023-8.

    Article  Google Scholar 

  • Jones, D. I. G. (2001). Handbook of viscoelastic vibration damping. Chichester: Wiley.

    Google Scholar 

  • Kammer, D. C. (1998). Input force reconstruction using a time domain technique. Journal of Vibration and Acoustics, 120(4), 868–874. https://doi.org/10.1115/1.2893913.

    Article  Google Scholar 

  • Kammer, D. C. (2005). Sensor set expansion for modal vibration testing. Mechanical Systems and Signal Processing, 19, 700–713.

    Article  Google Scholar 

  • Kay, S. M. (1993). Fundamentals of statistical signal processing (Vol. I: Estimation Theory, 1st ed.). Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Klerk, D. D., Rixen, D. J., & Voormeeren, S. N. (2008). General framework for dynamic substructuring: History, review and classification of techniques. AIAA Journal, 46(5), 1169–1181.

    Article  Google Scholar 

  • Leclère, Q., Roozen, N. B., & Sandier, C. (2012). Experimental estimation of transmissibility matrices. In Proceedings of the International Conference on Noise and Vibration Engineering (ISMA). Leuven, Belgium.

    Google Scholar 

  • Liljerehn, A.: Machine tool dynamics - a constrained state-space substructuring approach. Ph.D. thesis, Chalmers University of Technology, Dept Applied Mechanics (2016)

    Google Scholar 

  • Madsen, M. B. (2014). Electrical power assisted steering – dynamic source strength characteristic and vehicle NVH prediction. Master’s thesis, University of Southern Denmark.

    Google Scholar 

  • Magrans, F. X. (1981). Method of measuring transmission paths. Journal of Sound and Vibration, 74(3), 321–330. https://doi.org/10.1016/0022-460X(81)90302-3.

    Article  MATH  Google Scholar 

  • Maia, N. M. M., Silva, J. M. M., & Ribeiro, A. M. R. (2001). The transmissibility concept in multi-degree systems. Mechanical Systems and Signal Processing, 15(1), 129–137. https://doi.org/10.1006/mssp.2000.1356.

    Article  Google Scholar 

  • Mas, P., Sas, P. (1994). Indirect force identification based upon impedance matrix inversion: A study on statistical and deterministical accuracy. In: Proceedings of the International Conference on Noise and Vibration Engineering (ISMA). Leuven, Belgium.

    Google Scholar 

  • Mayes, R. (2015). A modal Craig-Bampton substructure for experiments, analysis, control and specifications.

    Chapter  Google Scholar 

  • Mayes, R., & Linehan, D. (2014). Measuring effective mass of a circuit board.

    Google Scholar 

  • Mayes, R., Schoenherr, T., Blecke, J., & Rohe, D. (2013). Efficient method of measuring effective mass of a system.

    Google Scholar 

  • Mondot, J. M., & Petersson, B. A. T. (1987). Characterization of structure-borne sound sources: The source descriptor and the coupling function. Journal of Sound and Vibration, 114(3), 507–518. https://doi.org/10.1016/S0022-460X(87)80020-2.

    Article  Google Scholar 

  • Moorhouse, A. T., Elliott, A. S., & Evans, T. A. (2009). In situ measurement of the blocked force of structure-borne sound sources. Journal of Sound and Vibration, 325(4–5), 679–685. https://doi.org/10.1016/j.jsv.2009.04.035. http://www.sciencedirect.com/science/article/pii/S0022460X09003794.

    Article  Google Scholar 

  • Moorhouse, A. T. (2001). On the characteristic power of structure-borne sound sources. Journal of Sound and Vibration, 248(3), 441–459. https://doi.org/10.1006/jsvi.2001.3797.

    Article  Google Scholar 

  • Norton, E. L. (1926). Design of finite networks for uniform frequency characteristic. Technical Report TM26–0–1860, Bell Laboratories.

    Google Scholar 

  • Noumura, K., & Yoshida, J. (2006). A method of transfer path analysis for vehicle interior sound with no excitation experiment. In Proceedings of FISITA 2006 World Automotive Congress, F2006D183. JSAE. http://www.fisita.com/publications/papers?id=4748

  • On, F. J. (1967). Mechanical impedance analysis for lumped parameter multi-degree of freedom/multi-dimensional systems. Technical report, NASA Technical Note D-3865 (1967)

    Google Scholar 

  • Penne, F. (2004). Shaping the sound of the next-generation BMW. In Proceedings of the International Conference on Noise and Vibration Engineering (ISMA) (pp. 25–39). Leuven, Belgium.

    Google Scholar 

  • Petersson, B. A. T., & Gibbs, B. M. (1993). Use of the source descriptor concept in studies of multi-point and multi-directional vibrational sources. Journal of Sound and Vibration, 168(1), 157–176. https://doi.org/10.1006/jsvi.1993.1367.

    Article  MATH  Google Scholar 

  • Petersson, B. A. T., & Gibbs, B. M. (2000). Towards a structure-borne sound source characterization. Applied Acoustics, 61(3), 325–343.

    Article  Google Scholar 

  • Plunkett, R. (1958). Interaction between a vibratory machine and its foundation. Noise Control, 4(1), 18–22.

    Article  Google Scholar 

  • Plunt, J. (2005). Finding and fixing vehicle NVH problems with transfer path analysis. Sound and Vibration, 39(11), 12–16.

    Google Scholar 

  • Powell, R. E., & Seering, W. (1984). Multichannel structural inverse filtering. Journal of Vibration and Acoustics, 106(1), 22–28. https://doi.org/10.1115/1.3269147.

    Article  Google Scholar 

  • Putner, J., Fastl, H., Lohrmann, M., Kaltenhauser, A., & Ullrich, F. (2012). Operational transfer path analysis predicting contributions to the vehicle interior noise for different excitations from the same sound source. In InterNoise12, no. 3 in INTER-NOISE and NOISE-CON Congress and Conference Proceedings (pp. 2336–2347). New York City, NY. http://www.ingentaconnect.com/content/ince/incecp/2012/00002012/00000009/art00034.

  • Putner, J., Lohrmann, M., & Fastl, H. (2013). Contribution analysis of vehicle exterior noise with operational transfer path analysis. Journal of the Acoustical Society of America, 133(5), 3323. https://doi.org/10.1121/1.4805558.

    Article  Google Scholar 

  • Reuss, P., Zeumer, B., Herrmann, J., & Gaul, L. (2012). Consideration of interface damping in dynamic substructuring. In Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics, Proceedings of the 30th IMAC, A Conference on Structural Dynamics (Vol. 2, pp. 81–88) Chap. 10. New York: Springer. https://doi.org/10.1007/978-1-4614-2422-2_10.

    Chapter  Google Scholar 

  • Ribeiro, A. M. R., Maia, N. M. M., & Silva, J. M. M. (1999). Experimental evaluation of the transmissibility matrix. In Proceedings of the XVII International Modal Analysis Conference (IMAC). Kissimmee, FL

    Google Scholar 

  • Ribeiro, A. M. R., Silva, J. M. M., & Maia, N. M. M. (2000). On the generalisation of the transmissibility concept. Mechanical Systems and Signal Processing, 14(1), 29–35. https://doi.org/10.1006/mssp.1999.1268.

    Article  Google Scholar 

  • Rixen, D. J., Boogaard, A., van der Seijs, M. V., van Schothorst, G., & van der Poel, T. (2015). Vibration source description in substructuring: A theoretical depiction. Mechanical Systems and Signal Processing, 60–61, 498–511. https://doi.org/10.1016/j.ymssp.2015.01.024.

    Article  Google Scholar 

  • Roozen, N. B., & Leclère, Q. (2013). On the use of artificial excitation in operational transfer path analysis. Applied Acoustics, 74(10), 1167–1174. https://doi.org/10.1016/j.apacoust.2013.04.011.

    Article  Google Scholar 

  • Rubin, S. (1967). Mechanical immittance- and transmission-matrix concepts. Journal of the Acoustical Society of America, 41(5), 1171–1179. https://doi.org/10.1121/1.1910455.

    Article  Google Scholar 

  • Sachse, D., Geluk, T., van Wayenberge, T. (2013). Accuracy of inverse load identification techniques for transfer path analysis. In Automotive Acoustics Conference 2013, 2nd International ATZ Conference. ATZlive

    Google Scholar 

  • Scheuren, J., & Lohrmann, M. (2014). Transfer path analysis – experiences, expectations and perspectives. In International Noise and Vibration Colloquium. SAE Brazil.

    Google Scholar 

  • Sedaghati, R., Soucy, Y., & Etienne, N. (2003). Experimental estimation of effective mass for structural dynamics and vibration applications.

    Google Scholar 

  • Sjövall, P., & Abrahamsson, T. (2008). Substructure system identification from coupled system test data. Mechanical Systems and Signal Processing, 22(1), 15–33. https://doi.org/10.1016/j.ymssp.2007.06.003.

    Article  Google Scholar 

  • Snowdon, J. C. (1979). Vibration isolation: use and characterization. Journal of the Acoustical Society of America, 66(5), 1245–1274. https://doi.org/10.1121/1.383546.

    Article  Google Scholar 

  • Soliman, J., & Hallam, M. (1968). Vibration isolation between non-rigid machines and non-rigid foundations. Journal of Sound & Vibration, 8(2), 329–351. https://doi.org/10.1016/0022-460X(68)90236-8.

    Article  Google Scholar 

  • Sturm, M., Moorhouse, A. T., Alber, T., & Li, F. F. (2012). Force reconstruction using an adaptive algorithm in time domain. In Proceedings of the International Conference on Noise and Vibration Engineering (ISMA) (, pp. 17–19). Leuven, Belgium.

    Google Scholar 

  • Sturm, M., Moorhouse, A. T., Kropp, W., & Alber, T. (2013). Robust calculation of simultaneous multi-channel blocked force signatures from measurements made in-situ using an adaptive algorithm in time domain. In Proceedings of the XX International Congress on Sound and Vibration (ICSV) (, vol. 2, pp. 1610–1617). Bangkok, Thailand.

    Google Scholar 

  • Ten Wolde, T. (1973). Reciprocity experiments on the transmission of sound in ships. Ph.D. thesis, Delft University of Technology, The Netherlands. http://resolver.tudelft.nl/uuid:6d3d9f26-e631-4043-a3ab-04bd45edde98

  • Ten Wolde, T. (2010). Reciprocity measurements in acoustical and mechano-acoustical systems. Review of theory and applications. Acta Acustica United with Acustica, 96(1), 1–13. https://doi.org/10.3813/AAA.918250

    Article  Google Scholar 

  • Ten Wolde, T., Verheij, J. W., & Steenhoek, H. F. (1975). Reciprocity method for the measurement of mechano-acoustical transfer functions. Journal of Sound and Vibration, 42(1), 49–55. https://doi.org/10.1016/0022-460X(75)90301-6.

    Article  Google Scholar 

  • Thévenin, M. L. (1883). Sur un nouveau théoreme d’électricité dynamique [On a new theorem of dynamic electricity]. Comptes Rendus hebdomadaires des des Séances de l’Académie des Sciences, 97, 159–161.

    MATH  Google Scholar 

  • Thite, A. N., Thompson, D. J. (2003a). The quantification of structure-borne transmission paths by inverse methods. Part 1: Improved singular value rejection methods. Journal of Sound and Vibration, 264(2), 411–431. https://doi.org/10.1016/S0022-460X(02)01202-6

    Article  Google Scholar 

  • Thite, A. N., Thompson, D. J. (2003b). The quantification of structure-borne transmission paths by inverse methods. Part 2: Use of regularization techniques. Journal of Sound and Vibration, 264(2), 433–451. https://doi.org/10.1016/S0022-460X(02)01203-8

    Article  Google Scholar 

  • Thite, A. N., & Thompson, D. J. (2006). Selection of response measurement locations to improve inverse force determination. Applied Acoustics, 67(8), 797–818. https://doi.org/10.1016/j.apacoust.2006.01.001.

    Article  Google Scholar 

  • Thompson, D. J., van Vliet, W. J., & Verheij, J. W. (1998). Developments of the indirect method for measuring the high frequency dynamic stiffness of resilient elements. Journal of Sound and Vibration, 213(1), 169–188. https://doi.org/10.1006/jsvi.1998.1492.

    Article  Google Scholar 

  • Ungar, E., & Dietrich, C. (1966). High-frequency vibration isolation. Journal of Sound & Vibration, 4(2), 224–241. https://doi.org/10.1016/0022-460X(66)90123-4.

    Article  Google Scholar 

  • Vakilzadeh, M. K., Yaghoubi, V., McKelvey, T., Abrahamsson, T. J., & Ljung, L. (2015). Experiment design for improved frequency domain subspace system identification of continuous-time systems (pp. 886–891). IFAC-PapersOnLine.

    Google Scholar 

  • van der Seijs, M. V., de Klerk, D., & Rixen, D. J. (2016). General framework for transfer path analysis: History, theory and classification of techniques. Mechanical Systems & Signal Processing, 68–69, 217–244. https://doi.org/10.1016/j.ymssp.2015.08.004.

    Article  Google Scholar 

  • van Schothorst, G., Boogaard, M. A., van der Poel, G. W., & Rixen, D. J. (2012). Analysis of ground vibration transmission in high precision equipment by frequency based substructuring. In Proceedings of the International Conference on Noise and Vibration Engineering (ISMA) (pp. 3501–3514). Leuven, Belgium.

    Google Scholar 

  • van den Bosch, D. D., van der Seijs, M. V., & de Klerk, D. (2014). Validation of blocked-force transfer path analysis with compensation for test bench dynamics. In Dynamics of Coupled Structures, Proceedings of the 32nd IMAC, A Conference and Exposition on Structural Dynamics, Chap. 4 (Vol. 1, pp. 37–49). New York: Springer. https://doi.org/10.1007/978-3-319-04501-6_4.

    Chapter  Google Scholar 

  • van der Auweraer, H., Mas, P., Dom, S., Vecchio, A., Janssens, K., van de Ponseele, P. (2007). Transfer path analysis in the critical path of vehicle refinement: The role of fast, hybrid and operational path analysis. Technical Report 2007-01-2352, SAE Technical Paper. https://doi.org/10.4271/2007-01-2352

  • van der Seijs, M. V., Pasma, E. A., de Klerk, D., & Rixen, D. J. (2014). A robust transfer path analysis method for steering gear vibrations on a test bench. In Proceedings of the International Conference on Noise and Vibration Engineering (ISMA). Leuven, Belgium. https://doi.org/10.13140/RG.2.1.4297.8647.

  • van der Seijs, M. V., Pasma, E. A., de Klerk, D., & Rixen, D. J. (2015). A comparison of two component TPA approaches for steering gear noise prediction. In Dynamics of Coupled Structures, Proceedings of the 33rd IMAC, A Conference and Exposition on Structural Dynamics, Chap. 7 (vol. 4, pp. 71–79). New York: Springer. https://doi.org/10.1007/978-3-319-15209-7_7.

    Chapter  Google Scholar 

  • Varoto, P. S., & McConnell, K. G. (1998). Single point versus multi point acceleration transmissibility concepts in vibration testing. In Proceedings of the XVI International Modal Analysis Conference (IMAC), Santa Barbara, CA (vol. 1, pp. 83–90). Bethel, CT: Society for Experimental Mechanics.

    Google Scholar 

  • Verheij, J. W. (1982). Multi-path sound transfer from resiliently mounted shipboard machinery: Experimental methods for analyzing and improving noise control. Ph.D. thesis, Delft University of Technology, The Netherlands. http://resolver.tudelft.nl/uuid:30d02e94-2fce-4b88-ab8f-6a58a08f0c06

  • Voormeeren, S.N. (2012). Dynamic substructuring methodologies for integrated dynamic analysis of wind turbines. Ph.D. thesis, Delft University of Technology, The Netherlands. https://doi.org/10.4233/uuid:f45f0548-d5ec-46aa-be7e-7f1c2b57590d

  • Voormeeren, S., & Rixen, D. (2012). A family of substructure decoupling techniques based on a dual assembly approach. Mechanical Systems and Signal Processing, 27(18), 379. https://doi.org/10.1016/j.ymssp.2011.07.028.

    Article  Google Scholar 

  • Vorländer, M., & Dietrich, P. (2008). Transfer path analysis and synthesis for auralization. In 39th Congreso Espanol de Acústica 2008. Coimbra, Portugal.

    Google Scholar 

  • Weijtjens, W., De Sitter, G., Devriendt, C., & Guillaume, P. (2014). Operational modal parameter estimation of mimo systems using transmissibility functions. Automatica, 50(2), 559–564. https://doi.org/10.1016/j.automatica.2013.11.021.

    Article  MathSciNet  MATH  Google Scholar 

  • Zeller, P. (2009). Handbuch Fahrzeugakustik. Springer,. https://doi.org/10.1007/978-3-8348-8657-6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew S. Allen .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allen, M.S., Rixen, D., van der Seijs, M., Tiso, P., Abrahamsson, T., Mayes, R.L. (2020). Industrial Applications & Related Concepts. In: Substructuring in Engineering Dynamics. CISM International Centre for Mechanical Sciences, vol 594. Springer, Cham. https://doi.org/10.1007/978-3-030-25532-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25532-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25531-2

  • Online ISBN: 978-3-030-25532-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics