Skip to main content

Radiopharmaceuticals for PET Imaging of Infection

  • Chapter
  • First Online:
Nuclear Medicine in Infectious Diseases

Abstract

Early diagnosis of infection in order to perform adequate treatment is crucial. Several radiopharmaceuticals presently available play a useful role in the diagnosis of bacterial infections, while new ones are being evaluated. In this review, we highlight tracers based on different uptake mechanisms that have been used in the evaluation of the bacterial infections. The performance of [18F]FDG, radiolabeled blood cells, [68Ga]Ga-citrate, and peptides used in humans is discussed and a large group of experimental new bacteria-specific PET tracers is in the pipeline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sathekge M, Maes A, Van de Wiele C. FDG-PET imaging in HIV infection and tuberculosis. Semin Nucl Med. 2013;43(5):349–66.

    Article  PubMed  Google Scholar 

  2. Ammann RW, Stumpe KD, Grimm F, Deplazes P, Huber S, Bertogg K, et al. Outcome after discontinuing long-term benzimidazole treatment in 11 patients with non-resectable alveolar echinococcosis with negative FDG-PET/CT and anti-EmII/3-10 serology. PLoS Negl Trop Dis. 2015;9(9):e0003964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ankrah AO, Sathekge MM, Dierckx RA, Glaudemans AW. Imaging fungal infections in children. Clin Transl Imaging. 2016;4:57–72.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Glaudemans AW, Signore A. FDG-PET/CT in infections: the imaging method of choice? Eur J Nucl Med Mol Imaging. 2010;37(10):1986–91.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Auletta S, Varani M, Horvat R, Galli F, Signore A, Hess S. PET radiopharmaceuticals for specific bacteria imaging: a systematic review. J Clin Med. 2019;8(2):E197.

    Article  PubMed  Google Scholar 

  6. Heuker M, Sijbesma JWA, Suarez RA, de Jong JR, Boersma HH, Luurtsema G, et al. In vitro imaging of 18F-fluorodeoxyglucose micropositron emission tomoghraphy. Sci Rep. 2017;7(1):4973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ankrah AO, Glaudemans AWJM, Klein HC, Dierckx RAJO, Sathekge M. The role of nuclear medicine in the staging and management of human immune deficiency virus infection and associated diseases. Nucl Med Mol Imaging. 2017;51(2):127–39.

    Article  CAS  PubMed  Google Scholar 

  8. Ankrah AO, van der Werf TS, de Vries EF, Dierckx RA, Sathekge MM, Glaudemans AW. PET/CT imaging of mycobacterium tuberculosis infection. Clin Transl Imaging. 2016;4:131–44.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ankrah AO, Klein HC, Span LFR, de Vries EFJ, Dierckx RAJO, Sathekge MM, et al. The role of PET in monitoring therapy in fungal infections. Curr Pharm Des. 2018;24(7):795–805.

    Article  CAS  PubMed  Google Scholar 

  10. Termaat MF, Raijmakers PG, Scholten HJ, Bakker FC, Patka P, Haarman HJ. The accuracy of diagnostic imaging for the assessment of chronic osteomyelitis: a systematic review and meta-analysis. J Bone Joint Surg Am. 2005;87(11):2464–71.

    CAS  PubMed  Google Scholar 

  11. Stumpe KD, Zanetti M, Weishaupt D, Hodler J, Boos N, Von Schulthess GK. FDG positron emission tomography for differentiation of degenerative and infectious endplate abnormalities in the lumbar spine detected on MR imaging. AJR Am J Roentgenol. 2002;179(5):1151–7.

    Article  PubMed  Google Scholar 

  12. Schmitz A, Risse JH, Grünwald F, Gassel F, Biersack HJ, Schmitt O. Fluorine-18 fluorodeoxyglucose positron emission tomography findings in spondylodiscitis: preliminary results. Eur Spine J. 2001;10(6):534–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Signore A, Jamar F, Israel O, Buscombe J, Martin-Comin J, Lazzeri E. Clinical indications, image acquisition and data interpretation for white blood cells and anti-granulocyte monoclonal antibody scintigraphy: an EANM procedural guideline. Eur J Nucl Med Mol Imaging. 2018;45(10):1816–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Prodromou ML Ziakas PD, Poulou LS, Karsaliakos P, Thanos L, Mylonakis E. FDG PET is a robust tool for the diagnosis of spondylodiscitis: a meta-analysis of diagnostic data. Clin Nucl Med. 2014;39(4):330–5.

    Article  PubMed  Google Scholar 

  15. Navaz A, Torigian DA, Siegelman ES, Basu S, Chryssikos T, Alavi A. Diagnostic performance of FDG-PET, MRI, and plain film radiography (PFR) for the diagnosis of osteomyelitis in the diabetic foot. Mol Imaging Biol. 2010;12(3):355–42.

    Google Scholar 

  16. Chryssikos T, Parvizi J, Ghanem E, Newberg A, Zhuang H, Alavi A. FDG-PET imaging can diagnose periprosthetic infection of the hip. Clin Orthop Relat Res. 2008;466(6):1338–42.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chacko TK, Zhuang H, Stevenson K, Moussavian B, Alavi A. The importance of the location of fluorodeoxyglucose uptake in periprosthetic infection in painful hip prostheses. Nucl Med Commun. 2002;23(9):851–5.

    Article  CAS  PubMed  Google Scholar 

  18. Vanquickenborne B, Maes A, Nuyts J, Van Acker F, Stuyck J, Mulier M, et al. The value of (18)FDG-PET for the detection of infected hip prosthesis. Eur J Nucl Med Mol Imaging. 2003;30(5):705–15.

    Article  CAS  PubMed  Google Scholar 

  19. Mumme T, Reinartz P, Alfer J, Müller-Rath R, Buell U, Wirtz DC. Diagnostic values of positron emission tomography versus triple-phase bone scan in hip arthroplasty loosening. Arch Orthop Trauma Surg. 2005;125(5):322–9.

    Article  CAS  PubMed  Google Scholar 

  20. Basu S, Kwee TC, Saboury B, Garino JP, Nelson CL, Zhuang H, et al. FDG PET for diagnosing infection in hip and knee prostheses: prospective study in 221 prostheses and subgroup comparison with combined (111)In-labeled leukocyte/(99m)Tc-sulfur colloid bone marrow imaging in 88 prostheses. Clin Nucl Med. 2014;39(7):609–15.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hao R, Yuan L, Kan Y, Yang J. 18F-FDG PET for diagnosing painful arthroplasty/prosthetic joint infection. Clin Transl Imaging. 2017;5(4):315–22.

    Article  Google Scholar 

  22. Sah BR, Husmann L, Mayer D, Scherrer A, Rancic Z, Puippe G, et al. Diagnostic performance of 18F-FDG-PET/CT in vascular graft infections. Vasc Endovascular Surg. 2015;49(4):455–64.

    Article  Google Scholar 

  23. The 2015 ESC guidelines for the management of infective endocarditis. Eur Heart J. 2015;36(44);3036–7.

    Google Scholar 

  24. Swart LE, Gomes A, Scholtens AM, Sinha B, Tanis W, Lam MGEH, et al. Improving the diagnostic performance of 18F-fluorodeoxyglucose positron-emission tomography/computed tomography in prosthetic heart valve endocarditis. Circulation. 2018;138(14):1412–27.

    Article  PubMed  Google Scholar 

  25. Scarsbrook A, Barrington S. Evidence based indications for the use of PET/CT in the United Kingdom. Clin Radiol. 2016;71(7):e171–88.

    Article  Google Scholar 

  26. Juneau D, Golfam M, Hazra S, Zuckier LS, Garas S, Redpath C, et al. Positron emission tomography and single-photon emission computed tomography imaging in the diagnosis of cardiac implantable electronic device infection: a systematic review and meta-analysis. Circ Cardiovasc Imaging. 2017;10(4):e005772.

    Article  PubMed  Google Scholar 

  27. Dumarey N, Egrise D, Blocklet D, Stallenberg B, Remmelink M, del Marmol V, et al. Imaging infection with 18F-FDG-labeled leukocyte PET/CT: initial experience in 21 patients. J Nucl Med. 2006;47(4):625–32.

    PubMed  Google Scholar 

  28. Bhattacharya A, Kochhar R, Sharma S, Ray P, Kalra N, Khandelwal N, et al. PET/CT with 18F-FDG-labeled autologous leukocytes for the diagnosis of infected fluid collections in acute pancreatitis. J Nucl Med. 2014;55(8):1267–72.

    Article  CAS  PubMed  Google Scholar 

  29. Bhargava KK, Gupta RK, Nichols KJ, Palestro CJ. In vitro human leukocyte labelling with 64Cu: an intraindividual comparison with [111In]oxine and [18F]FDG. Nucl Med Biol. 2009;36(5):545–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miñana E, Roldán M, Chivato T, Martínez T, Fuente T. Quantification of the chromosoimal radiation damage induced by labelling of leukocytes with [18F]FDG. Nucl Med Biol. 2015;42(9):720–3.

    Article  CAS  PubMed  Google Scholar 

  31. Nanni C, Errani C, Boriani L, Fantini L, Ambrosini V, Boschi S, et al. 68Ga-citrate PET/CT for evaluating patients with infections of the bone: preliminary results. J Nucl Med. 2010;51(12):1932–6.

    Article  PubMed  Google Scholar 

  32. Vorster M, Maes A, van de Wiele C, Sathekge M. 68Ga-citrate PET/CT in tuberculosis: a pilot study. Q J Nucl Med Mol Imaging. 2019;63(1):48–55.

    Article  PubMed  Google Scholar 

  33. Salomäki SP, Kemppainen J, Hohenthal U, Luoto P, Eskola O, Nuutila P, Seppänen M, Pirilä L, Oksi J, Roivainen A. Head-to-head comparison of 68Ga-citrate and 18F-FDG PET/CT for detection of infectious foci in patients with Staphylococcus aureus bacteraemia. Contrast Media Mol Imaging. 2017;2017:3179607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vorster M, Maes A, Jacobs A, Malefahlo S, Pottel H, Van de Wiele C, Sathekge MM. Evaluating the possible role of 68Ga-citrate PET/CT in the characterization of indeterminate lung lesions. Ann Nucl Med. 2014;28(6):523–30.

    CAS  PubMed  Google Scholar 

  35. Ebenhan T, Zeevaart JR, Venter JD, Govender T, Kruger GH, Jarvis NV, et al. Preclinical evaluation of 68Ga-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid-ubiquicidin as a radioligand for PET infection imaging. J Nucl Med. 2014;55(2):308–14.

    Article  CAS  PubMed  Google Scholar 

  36. Bhatt J, Mukherjee A, Shinto A, Karuppusamy KK, Korde A, Kumar M, et al. Gallium-68 labeled Ubiquicidin derived octapeptide as a potential infection imaging agent. Nucl Med Biol. 2018;62–63:47–53.

    Article  CAS  PubMed  Google Scholar 

  37. Ebenhan T, Sathekge MM, Lengana T, Koole M, Gheysens O, Govender T, et al. 68Ga-NOTA-functionalized Ubiquicidin: cytotoxicity, biodistribution, radiation dosimetry, and first-in-human PET/CT imaging of infections. J Nucl Med. 2018;59(2):334–9.

    Article  CAS  PubMed  Google Scholar 

  38. Vilche M, Reyes AL, Vasilskis E, Oliver P, Balter H, Engler H. 68Ga-NOTA-UBI-29-41 as a PET tracer for detection of bacterial infection. J Nucl Med. 2016;57(4):622–7.

    Article  CAS  PubMed  Google Scholar 

  39. Salber D, Gunawan J, Langen KJ, Fricke E, Klauth P, Burchert W, et al. Comparison of [99mTc]- and [18F]ubiquicidin autoradiography to anti-Staphylococcus aureus immunofluorescence in rat muscle abscesses. J Nucl Med. 2008;49(6):995–9.

    Article  PubMed  Google Scholar 

  40. Ebenhan T, Mokaleng BB, Venter JD, Kruger HG, Zeevaart JR, Sathekge M. Preclinical assessment of a 68Ga-DOTA functionalized depsipeptide as a radiodiagnostic infection imaging agent. Molecules. 2017;22(9):E1403.

    Article  CAS  PubMed  Google Scholar 

  41. Mokaleng BB, Ebenhan T, Ramesh S, Govender T, Kruger HG, Parboosing R, et al. Synthesis, 68Ga-radiolabeling, and preliminary in vivo assessment of a depsipeptide-derived compound as a potential PET/CT infection imaging agent. Biomed Res Int. 2015;2015:284354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nielsen KM, Kyneb MH, Alstrup AK, Jensen JJ, Bender D, Schønheyder HC, et al. (68)Ga-labeled phage-display selected peptides as tracers for positron emission tomography imaging of Staphylococcus aureus biofilm-associated infections: selection, radiolabelling and preliminary biological evaluation. Nucl Med Biol. 2016;43(10):593–605.

    Article  CAS  PubMed  Google Scholar 

  43. Nielsen KM, Jorgensen NP, Kyneb MH, Borghammer P, Meyer RL, Thomsen TR, et al. Preclinical evaluation of potential infection-imaging probe [68Ga]Ga-DOTA-K-A9 in sterile and infectious inflammation. J Label Compd Radiopharm [Internet]. 2018 May [cited 2019.02.26]. https://onlinelibrary.wiley.com/doi/full/10.1002/jlcr.3640. https://doi.org/10.1002/jlcr.3640

  44. Satpati D, Arjun C, Krishnamohan R, Samuel G, Banerjee S. 68Ga-labeled ciprofloxacin conjugates as radiotracers for targeting bacterial infection. Chem Biol Drug Des. 2016;87(5):680–6.

    Article  CAS  PubMed  Google Scholar 

  45. Langer O, Brunner M, Zeitlinger M, Ziegler S, Muller U, Dobrozemsky G, et al. In vitro and in vivo evaluation of [18F]ciprofloxacin for the imaging of bacterial infections with PET. Eur J Nucl Med Mol Imaging. 2005;32(2):143–50.

    Article  CAS  PubMed  Google Scholar 

  46. Sellmyer MA, Lee I, Hou C, Weng CC, Li S, Lieberman BP, et al. Bacterial infection imaging with [18F]fluoropropyl-trimethoprim. Proc Natl Acad Sci U S A. 2017;114(31):8372–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Eigner S, Beckford Vera D, Lebeda O, Eigner Henke K. 68Ga-DOTA-puromycin: in vivo imaging of bacterial infection. J Nucl Med. 2013;S54(2):1218.

    Google Scholar 

  48. Betts HM, Milicevic Sephton S, Tong C, Awais RO, Hill PJ, Perkins AC, et al. Synthesis, in vitro evaluation, and radiolabeling of fluorinated puromycin analogues: potential candidates for PET imaging of protein synthesis. J Med Chem. 2016;59(20):9422–30.

    Article  CAS  PubMed  Google Scholar 

  49. DeMarco VP, Ordonez AA, Klunk M, Prideaux B, Wang H, Zhuo Z, et al. Determination of [11C]rifampin pharmacokinetics within Mycobacterium tuberculosis-infected mice by using dynamic positron emission tomography bioimaging. Antimicrob Agents Chemother. 2015;59(9):5768–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weinstein EA, Liu L, Ordonez AA, Wang H, Hooker JM, Tonge PJ, Jain SK. Noninvasive determination of 2-[18F]-fluoroisonicotinic acid hydrazide pharmacokinetics by positron emission tomography in mycobacterium tuberculosis-infected mice. Antimicrob Agents Chemother. 2012;57(12):6284–90.

    Article  CAS  Google Scholar 

  51. Zhang Z, Ordonez AA, Smith-Jones P, Wang H, Gogarty KR, Daryaee F, et al. The biodistribution of 5-[18F]fluoropyrazinamide in Mycobacterium tuberculosis-infected mice determined by positron emission tomography. PLoS One. 2017;12(2):e0170871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lupetti A, Welling MM, Pauwels EK, Nibbering PH. Detection of fungal infections using radiolabeled antifungal agents. Curr Drug Targets. 2005;6(8):945–54.

    Article  CAS  PubMed  Google Scholar 

  53. Livni E, Fischman AJ, Ray S, Sinclair I, Elmaleh DR, Alpert NM, et al. Synthesis of 18F-labeled fluconazole and positron emission tomography studies in rabbits. Int J Rad Appl Instrum B. 1992;19(2):191–9.

    Article  CAS  PubMed  Google Scholar 

  54. Wiehr S, Warnke P, Rolle AM, Schutz M Oberhettinger P, Kohlhofer U, et al. New pathogen-specific immunoPET/MR tracer for molecular imaging of a systemic bacterial infection. Oncotarget. 2016;7(10):10990–1001.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pickett JE, Thompson JM, Sadowska A, Tkaczyk C, Sellman BR, Minola A, et al. Molecularly specific detection of bacterial lipoteichoic acid for diagnosis of prosthetic joint infection of the bone. Bone Res. 2018;6:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Santangelo PJ, Rogers KA, Zurla C, Blanchard EL, Gumber S, Strait K, et al. Whole-body immunoPET reveals active SIV dynamics in viremic and antiretroviral therapy-treated macaques. Nat Methods. 2015;12(5):427–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rolle AM, Hasenberg M, Thornton CR, Solouk-Saran D, Männ L, Weski J, et al. ImmunoPET/MR imaging allows specific detection of Aspergillus fumigatus lung infection in vivo. Proc Natl Acad Sci U S A. 2016;113(8):E1026–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Petrik M, Franssen GM, Haas H, Laverman P, Hörtnagl C, et al. Preclinical evaluation of two 68Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. Eur J Nucl Med Mol Imaging. 2012;39(7):1175–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Petrik M, Haas H, Laverman P, Schrettl M, Franssen GM, Blatzer M, et al. 68Ga-triacetylfusarinine C and 68Ga-ferrioxamine E for Aspergillus infection imaging: uptake specificity in various microorganisms. Mol Imaging Biol. 2014;16(1):102–8.

    Article  PubMed  Google Scholar 

  60. Takemiya K, Ning X, Seo W, Wang X, Mohammad R, Joseph G, et al. Novel PET and near infrared imaging probes for the specific detection of bacterial infections associated with cardiac devices. JACC Cardiovasc Imaging. 2018. pii:S1936-878X(18)30207-9.

    Google Scholar 

  61. Ning X, Seo W, Lee S, Takemiya K, Rafi M, Feng X, Weiss D, Wang X, Williams L, Camp VM, et al. PET imaging of bacterial infections with fluorine-18 labeled maltohexaose. Angew Chem Int Ed Engl. 2014;53(51):14096–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ning X, Lee S, Wang Z, Kim D, Stubblefield B, Gilbert E, et al. Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity. Nat Mater. 2011;10(8):602–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gowrishankar G, Namavari M, Jouannot EB, Hoehne A, Reeves R, Hardy J, et al. Investigation of 6-[18F]-fluoromaltose as a novel PET tracer for imaging bacterial infection. PLoS One. 2014;9(9):e107951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li J, Zheng H, Fodah R, Warawa JM, Ng CK. Validation of 2-18F-fluorodeoxysorbitol as a potential radiopharmaceutical for imaging bacterial infection in the lung. J Nucl Med. 2018;59(1):134–9.

    Article  CAS  PubMed  Google Scholar 

  65. Ordonez AA, Weinstein EA, Bambarger LE, Saini V, Chang YS, DeMarco VP, Klunk MH, Urbanowski ME, Moulton KL Murawski AM, et al. A systematic approach for developing bacteria-specific imaging tracers. J Nucl Med. 2017;58(1):144–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yao S, Xing H, Zhu W, Wu Z, Zhang Y, Ma Y, Liu Y, Zhu Z, Li Z, Fang L. Infection imaging with 18F-FDS and first-in-human evaluation. Nucl Med Biol. 2016;43:206–14.

    Article  CAS  PubMed  Google Scholar 

  67. Weinstein EA, Ordonez AA, DeMarco VP, Murawski AM, Pokkali S, MacDonald EM, et al. Imaging Enterobacteriaceae infection in vivo with 18F-fluorodeoxysorbitol positron emission tomography. Sci Transl Med. 2014;6(259):259ra146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mills B, Awais RO, Luckett J Turton D, Williams P, Perkins AC, et al. [18F]FDG-6-P as a novel in vivo tool for imaging staphylococcal infections. EJNMMI Res. 2015;5:13.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Martìnez ME, Kiyono Y, Noriki S, Inai K, Mandap KS, Kobayashi M, et al. New radiosynthesis of 2-deoxy-2-[18F]fluoroacetamido-D-glucopyranose and its evaluation as a bacterial infections imaging agent. Nucl Med Biol. 2011;38(6):807–17.

    PubMed  Google Scholar 

  70. Peña-Zalbidea S, Huang AY, Kavunja HW, Salinas B, Desco M, Drake C, et al. Chemoenzymatic radiosynthesis of 2-deoxy-2-[18F]fluoro-d-trehalose ([18F]-2-FDTre): a PET radioprobe for in vivo tracing of trehalose metabolism. Carbohydr Res. 2019;472:16–22.

    Article  CAS  PubMed  Google Scholar 

  71. Rajamani S, Kuszpit K, Scarff JM, Lundh L, Khan M, Brown J, et al. Bioengineering of bacterial pathogens for noninvasive imaging and in vivo evaluation of therapeutics. Sci Rep. 2018;8(1):12618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Diaz LA, Foss CA, Thornton K, Nimmagadda S, Endras CJ, Uzuner O, et al. Imaging of musculoskeletal bacterial infections by [124I]FIAU-PET/CT. PLoS One. 2007;2(10):e1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang XM, Zhang HH, McLeroth P, Berkowitz RD, Mont MA, Stabin MG, et al. [124I]FIAU: human dosimetry and infection imaging in patients with suspected prosthetic joint infection. Nucl Med Biol. 2016;43(5):273–9.

    Article  CAS  PubMed  Google Scholar 

  74. Mutch CA, Ordonez AA, Qui H, Parker M, Bambarger LE, Villanueva-Meyer JE, et al. [11C]Para-aminobenzoic acid: a positron emission tomography tracer targeting bacteria-specific metabolism. ACS Infect Dis. 2018;4(7):1067–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang Z, Ordonez AA, Wang H, Li Y, Gogarty KR, Weinstein EA, et al. Positron emission tomography imaging with 2-[18F]F-p-aminobenzoic acid detects Staphylococcus aureus infections and monitors drug response. ACS Infect Dis. 2018;4(11):1635–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Neumann KD, Villanueva-Meyer JE, Mutch CA, Flavell RR, Blecha JE, Kwak T, et al. Imaging active infection in vivo using D-amino acid derived PET radiotracers. Sci Rep. 2017;7(1):7903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Panizzi P, Nahrendorf M, Figueiredo JL, Panizzi J, Marinelli B, Iwamoto Y, et al. In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nat Med. 2012;17(9):1142–6.

    Article  CAS  Google Scholar 

  78. Kumar V, Boddeti DK, Evans SG, Roesch F, Howman-Giles R. Potential use of 68Ga-apo-transferrin as a PET imaging agent for detecting Staphylococcus aureus infection. Nucl Med Biol. 2011;38(3):393–8.

    Article  CAS  PubMed  Google Scholar 

  79. Jang SJ, Lee YJ, Lim S, Kim KI, Lee KC, An GI, et al. Imaging of a localized bacterial infection with endogenous thymidine kinase using radioisotope-labeled nucleosides. Int J Med Microbiol. 2012;302(2):101–7.

    Article  CAS  PubMed  Google Scholar 

  80. Tan Y, Liang J, Liu D, Zhu F, Wang G, Ding X, et al. 18F-FLT PET/CT imaging in a Wister rabbit inflammation model. Exp Ther Med. 2014;8(1):69–72.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wiehr S, Rolle AM, Warnke P, Kohlhofer U, Quintanilla-Martinez L, Reischl G, et al. The positron emission tomography tracer 3′-deoxy-3′-[18F]Fluorothymidine ([18F]FLT) is not suitable to detect tissue proliferation induced by systemic yersinia enterocolitica infection in mice. PLoS One. 2016;11(10):e0164163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip H. Elsinga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ankrah, A.O., Elsinga, P.H. (2020). Radiopharmaceuticals for PET Imaging of Infection. In: Signore, A., Glaudemans, A. (eds) Nuclear Medicine in Infectious Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-25494-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25494-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25493-3

  • Online ISBN: 978-3-030-25494-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics