Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 241 Accesses

Abstract

Medium modification observables for high transverse momentum hadrons serve as the hard probe of the evolution history of the QCD matter produced in such collisions, as well as its constituent. CUJET/CIBJET framework is a sophisticated simulation tool that allows the quantitative soft-hard event engineering study. In this chapter we introduce the details of CUJET/CIBJET framework, in particular how elastic and inelastic energy loss is simulated, via collisions with chromo-electric and magnetic components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Liao, E. Shuryak, Phys. Rev. Lett. 102, 202302 (2009). https://doi.org/10.1103/PhysRevLett.102.202302

    Article  ADS  Google Scholar 

  2. X. Zhang, J. Liao, Phys. Rev. C87, 044910 (2013). https://doi.org/10.1103/PhysRevC.87.044910

    ADS  Google Scholar 

  3. X. Zhang, J. Liao, Phys. Rev. C89(1), 014907 (2014). https://doi.org/10.1103/PhysRevC.89.014907

    ADS  Google Scholar 

  4. S.K. Das, F. Scardina, S. Plumari, V. Greco, Phys. Lett. B747, 260 (2015). https://doi.org/10.1016/j.physletb.2015.06.003

    Article  ADS  Google Scholar 

  5. W.A. Horowitz, M. Gyulassy, Nucl. Phys. A872, 265 (2011). https://doi.org/10.1016/j.nuclphysa.2011.09.018

    Article  ADS  Google Scholar 

  6. B. Betz, M. Gyulassy, Phys. Rev. C86, 024903 (2012). https://doi.org/10.1103/PhysRevC.86.024903

    ADS  Google Scholar 

  7. K.M. Burke et al., Phys. Rev. C90(1), 014909 (2014). https://doi.org/10.1103/PhysRevC.90.014909

    ADS  Google Scholar 

  8. A. Buzzatti, M. Gyulassy, Phys. Rev. Lett. 108, 022301 (2012). https://doi.org/10.1103/PhysRevLett.108.022301

    Article  ADS  Google Scholar 

  9. J. Xu, A. Buzzatti, M. Gyulassy, J. High Energy Phys. 08, 063 (2014). https://doi.org/10.1007/JHEP08(2014)063

    Article  ADS  Google Scholar 

  10. M. Cacciari, P. Nason, R. Vogt, Phys. Rev. Lett. 95, 122001 (2005). https://doi.org/10.1103/PhysRevLett.95.122001

    Article  ADS  Google Scholar 

  11. B.A. Kniehl, G. Kramer, B. Potter, Nucl. Phys. B582, 514 (2000). https://doi.org/10.1016/S0550-3213(00)00303-5

    Article  ADS  Google Scholar 

  12. C. Peterson, D. Schlatter, I. Schmitt, P.M. Zerwas, Phys. Rev. D27, 105 (1983). https://doi.org/10.1103/PhysRevD.27.105

    ADS  Google Scholar 

  13. J. Xu, J. Liao, M. Gyulassy, Chin. Phys. Lett. 32(9), 092501 (2015). https://doi.org/10.1088/0256-307X/32/9/092501

    Article  ADS  Google Scholar 

  14. J. Xu, J. Liao, M. Gyulassy, J. High Energy Phys. 02, 169 (2016). https://doi.org/10.1007/JHEP02(2016)169; A.M. Polyakov, JETP Lett. 20, 194 (1974). [,300(1974)]; B.G. Zakharov, JETP Lett. 88, 781 (2008). https://doi.org/10.1134/S0021364008240016

  15. JET Collaboration, DOE-DUKE-5396-1 (2015). https://doi.org/10.2172/1242882; B.G. Zakharov, JETP Lett. 101(9), 587 (2015). https://doi.org/10.1134/S0021364015090131. [Pisma Zh. Eksp. Teor. Fiz.101,no.9,659(2015)]

  16. N. Armesto et al., Phys. Rev. C86, 064904 (2012). https://doi.org/10.1103/PhysRevC.86.064904

    ADS  Google Scholar 

  17. Y.T. Chien, A. Emerman, Z.B. Kang, G. Ovanesyan, I. Vitev, Phys. Rev. D93(7), 074030 (2016). https://doi.org/10.1103/PhysRevD.93.074030

    ADS  Google Scholar 

  18. E. Bianchi, J. Elledge, A. Kumar, A. Majumder, G.Y. Qin, C. Shen (2017). arXiv:1702.00481

    Google Scholar 

  19. S. Cao, T. Luo, G.Y. Qin, X.N. Wang, Phys. Lett. B777, 255 (2018). https://doi.org/10.1016/j.physletb.2017.12.023

    Article  ADS  Google Scholar 

  20. M.H. Thoma, M. Gyulassy, Nucl. Phys. B351, 491 (1991). https://doi.org/10.1016/S0550-3213(05)80031-8

    Article  ADS  Google Scholar 

  21. J.D. Bjorken, FERMILAB-PUB-82-059-THY (1982)

    Google Scholar 

  22. S. Peigne, A. Peshier, Phys. Rev. D77, 114017 (2008). https://doi.org/10.1103/PhysRevD.77.114017

    ADS  Google Scholar 

  23. M. Gyulassy, X.n. Wang, Nucl. Phys. B420, 583 (1994). https://doi.org/10.1016/0550-3213(94)90079-5

    Article  ADS  Google Scholar 

  24. M. Gyulassy, P. Levai, I. Vitev, Nucl. Phys. B594, 371 (2001). https://doi.org/10.1016/S0550-3213(00)00652-0

    Article  ADS  Google Scholar 

  25. M. Djordjevic, M. Gyulassy, Nucl. Phys. A733, 265 (2004). https://doi.org/10.1016/j.nuclphysa.2003.12.020

    Article  ADS  Google Scholar 

  26. M. Djordjevic, U.W. Heinz, Phys. Rev. Lett. 101, 022302 (2008). https://doi.org/10.1103/PhysRevLett.101.022302

    Article  ADS  Google Scholar 

  27. J. Liao, E. Shuryak, Phys. Rev. C75, 054907 (2007). https://doi.org/10.1103/PhysRevC.75.054907

    ADS  Google Scholar 

  28. J. Liao, E. Shuryak, Phys. Rev. C77, 064905 (2008). https://doi.org/10.1103/PhysRevC.77.064905

    ADS  Google Scholar 

  29. J. Liao, E. Shuryak, Phys. Rev. D82, 094007 (2010). https://doi.org/10.1103/PhysRevD.82.094007

    ADS  Google Scholar 

  30. J. Liao, E. Shuryak, Phys. Rev. Lett. 101, 162302 (2008). https://doi.org/10.1103/PhysRevLett.101.162302

    Article  ADS  Google Scholar 

  31. J. Liao, E. Shuryak, Phys. Rev. Lett. 109, 152001 (2012). https://doi.org/10.1103/PhysRevLett.109.152001

    Article  ADS  Google Scholar 

  32. B.G. Zakharov, JETP Lett. 88, 781 (2008). https://doi.org/10.1134/S0021364008240016

    Article  ADS  Google Scholar 

  33. L. Randall, R. Rattazzi, E.V. Shuryak, Phys. Rev. D59, 035005 (1999). https://doi.org/10.1103/PhysRevD.59.035005

    ADS  Google Scholar 

  34. H. Liu, K. Rajagopal, U.A. Wiedemann, J. High Energy Phys. 03, 066 (2007). https://doi.org/10.1088/1126-6708/2007/03/066

    Article  ADS  Google Scholar 

  35. R. Baier, A.H. Mueller, D. Schiff, Phys. Lett. B649, 147 (2007). https://doi.org/10.1016/j.physletb.2007.03.048

    Article  ADS  Google Scholar 

  36. H. Song, U.W. Heinz, Phys. Rev. C78, 024902 (2008). https://doi.org/10.1103/PhysRevC.78.024902

    ADS  Google Scholar 

  37. C. Shen, U. Heinz, P. Huovinen, H. Song, Phys. Rev. C82, 054904 (2010). https://doi.org/10.1103/PhysRevC.82.054904

    ADS  Google Scholar 

  38. T. Renk, H. Holopainen, U. Heinz, C. Shen, Phys. Rev. C83, 014910 (2011). https://doi.org/10.1103/PhysRevC.83.014910

    ADS  Google Scholar 

  39. H. Song, S.A. Bass, U. Heinz, T. Hirano, C. Shen, Phys. Rev. Lett. 106, 192301 (2011). https://doi.org/10.1103/PhysRevLett.106.192301, https://doi.org/10.1103/PhysRevLett.109.139904. [Erratum: Phys. Rev. Lett.109,139904(2012)]

  40. A. Majumder, C. Shen, Phys. Rev. Lett. 109, 202301 (2012). https://doi.org/10.1103/PhysRevLett.109.202301

    Article  ADS  Google Scholar 

  41. Z. Qiu, C. Shen, U. Heinz, Phys. Lett. B707, 151 (2012). https://doi.org/10.1016/j.physletb.2011.12.041

    Article  ADS  Google Scholar 

  42. C. Shen, U. Heinz, P. Huovinen, H. Song, Phys. Rev. C84, 044903 (2011). https://doi.org/10.1103/PhysRevC.84.044903

    ADS  Google Scholar 

  43. C. Shen, U. Heinz, Phys. Rev. C85, 054902 (2012). https://doi.org/10.1103/PhysRevC.86.049903, https://doi.org/10.1103/PhysRevC.85.054902. [Erratum: Phys. Rev.C86,049903(2012)]

  44. C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, U. Heinz, Comput. Phys. Commun. 199, 61 (2016). https://doi.org/10.1016/j.cpc.2015.08.039

    Article  ADS  MathSciNet  Google Scholar 

  45. A. Peshier (2006). arXiv:hep-ph/0601119

    Google Scholar 

  46. Y. Hidaka, R.D. Pisarski, Phys. Rev. D78, 071501 (2008). https://doi.org/10.1103/PhysRevD.78.071501

    ADS  Google Scholar 

  47. Y. Hidaka, R.D. Pisarski, Phys. Rev. D81, 076002 (2010). https://doi.org/10.1103/PhysRevD.81.076002

    ADS  Google Scholar 

  48. A. Dumitru, Y. Guo, Y. Hidaka, C.P.K. Altes, R.D. Pisarski, Phys. Rev. D83, 034022 (2011). https://doi.org/10.1103/PhysRevD.83.034022

    ADS  Google Scholar 

  49. S. Lin, R.D. Pisarski, V.V. Skokov, Phys. Lett. B730, 236 (2014). https://doi.org/10.1016/j.physletb.2014.01.043

    Article  ADS  Google Scholar 

  50. A. Bazavov et al., Phys. Rev. D80, 014504 (2009). https://doi.org/10.1103/PhysRevD.80.014504

    ADS  Google Scholar 

  51. S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, C. Ratti, K.K. Szabo, J. High Energy Phys. 09, 073 (2010). https://doi.org/10.1007/JHEP09(2010)073

    Article  ADS  Google Scholar 

  52. L.D. McLerran, Phys. Rev. D36, 3291 (1987). https://doi.org/10.1103/PhysRevD.36.3291

    ADS  Google Scholar 

  53. S.A. Gottlieb, W. Liu, D. Toussaint, R.L. Renken, R.L. Sugar, Phys. Rev. D38, 2888 (1988). https://doi.org/10.1103/PhysRevD.38.2888

    ADS  Google Scholar 

  54. R.V. Gavai, J. Potvin, S. Sanielevici, Phys. Rev. D40, 2743 (1989). https://doi.org/10.1103/PhysRevD.40.2743

    ADS  Google Scholar 

  55. S.A. Gottlieb, W. Liu, D. Toussaint, R.L. Renken, R.L. Sugar, Phys. Rev. Lett. 59, 2247 (1987). https://doi.org/10.1103/PhysRevLett.59.2247

    Article  ADS  Google Scholar 

  56. J. Noronha-Hostler, B. Betz, J. Noronha, M. Gyulassy, Phys. Rev. Lett. 116(25), 252301 (2016). https://doi.org/10.1103/PhysRevLett.116.252301

    Article  ADS  Google Scholar 

  57. B. Betz, M. Gyulassy, M. Luzum, J. Noronha, J. Noronha-Hostler, I. Portillo, C. Ratti, Phys. Rev. C95(4), 044901 (2017). https://doi.org/10.1103/PhysRevC.95.044901

    ADS  Google Scholar 

  58. M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Ann. Rev. Nucl. Part. Sci. 57, 205 (2007). https://doi.org/10.1146/annurev.nucl.57.090506.123020

    Article  ADS  Google Scholar 

  59. J.S. Moreland, J.E. Bernhard, S.A. Bass, Phys. Rev. C92(1), 011901 (2015). https://doi.org/10.1103/PhysRevC.92.011901

    ADS  Google Scholar 

  60. J. Adam et al., Phys. Rev. Lett. 116(13), 132302 (2016). https://doi.org/10.1103/PhysRevLett.116.132302

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shi, S. (2019). Jet Energy-Loss Simulations. In: Soft and Hard Probes of QCD Topological Structures in Relativistic Heavy-Ion Collisions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-25482-7_8

Download citation

Publish with us

Policies and ethics