Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 175 Accesses

Abstract

Particle physics is the branch of physics that studies the different fundamental particles in nature and how one type interacts with another. There are two classes of these particles based on their spin: fermions and bosons. Fermions have an odd-integer multiple of \(\frac {1}{2}\) spin and obey Fermi–Dirac statistics, and by the Fermi exclusion principle, two different fermions cannot occupy the same quantum state. Almost all of the ordinary objects with which humans interact are composed of fermions. Ignoring finer distinctions for the moment, only 12 elementary fermions are known, 6 leptons and 6 quarks, each of which can be subdivided into three generations with similar properties. Bosons, on the other hand, have an even-integer spin and obey Bose–Einstein statistics. Elementary bosons act as mediators between fermions and are the main carries of force in interaction, which could be either strong, weak, electromagnetic, or gravitational.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.L. Glashow, Partial-symmetries of weak interactions. Nucl. Phys. 22, 579 (1961). https://doi.org/10.1016/0029-5582(61)90469-2

    Article  Google Scholar 

  2. S. Weinberg, A model of leptons. Phys. Rev Lett. 19, 1264 (1967). https://doi.org/10.1103/PhysRevLett.19.1264

    Article  ADS  Google Scholar 

  3. A. Salam, Weak and electromagnetic interactions, in Elementary Particle Physics: Relativistic Groups and Analyticity, ed. by N. Svartholm. Proceedings of the Eighth Nobel Symposium, p. 367 (Almqvist & Wiksell, Stockholm, 1968)

    Google Scholar 

  4. D.J. Gross, F. Wilczek, Ultraviolet behavior of non-abelian gauge theories. Phys. Rev Lett. 30, 1343 (1973). https://doi.org/10.1103/PhysRevLett.30.1343

    Article  ADS  Google Scholar 

  5. H. David Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346 (1973). https://doi.org/10.1103/PhysRevLett.30.1346

    Article  Google Scholar 

  6. P.W. Anderson, Plasmons, gauge invariance, and mass. Phys. Rev. 130, 439–442 (1963). https://doi.org/10.1103/PhysRev.130.439

    Article  ADS  MathSciNet  Google Scholar 

  7. F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321 (1964). https://doi.org/10.1103/PhysRevLett.13.321

    Article  ADS  MathSciNet  Google Scholar 

  8. P.W. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132 (1964). https://doi.org/10.1016/0031-9163(64)91136-9

    Article  ADS  Google Scholar 

  9. P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508 (1964). https://doi.org/10.1103/PhysRevLett.13.508

    Article  ADS  MathSciNet  Google Scholar 

  10. G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585 (1964). https://doi.org/10.1103/PhysRevLett.13.585

    Article  ADS  Google Scholar 

  11. P.W. Higgs, Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156 (1966). https://doi.org/10.1103/PhysRev.145.1156

    Article  ADS  MathSciNet  Google Scholar 

  12. T.W.B. Kibble, Symmetry breaking in non-Abelian gauge theories. Phys. Rev. 155, 1554 (1967). https://doi.org/10.1103/PhysRev.155.1554

    Article  ADS  Google Scholar 

  13. Y. Nambu, G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. I. Phys. Rev. 122, 345 (1961). https://doi.org/10.1103/PhysRev.122.345

    Article  ADS  Google Scholar 

  14. M. Gell-Mann, M. Levy, The axial vector current in beta decay. Nuovo Cim. 16, 705 (1960). https://doi.org/10.1007/BF02859738

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Goldhaber, L. Grodzins, A.W. Sunyar, Helicity of neutrinos. Phys. Rev. 109, 1015–1017 (1958). https://doi.org/10.1103/PhysRev.109.1015

    Article  ADS  Google Scholar 

  16. C. Patrignani, Particle Data Group, Review of particle physics. Chin. Phys. C 40(10), 100001 (2016). http://stacks.iop.org/1674-1137/40/i=10/a=100001

  17. N. Cabibbo, Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531–533 (1963). https://doi.org/10.1103/PhysRevLett.10.531

    Article  ADS  Google Scholar 

  18. M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973). https://doi.org/10.1143/PTP.49.652

    Article  ADS  Google Scholar 

  19. L.-L. Chau, W.-Y. Keung, Comments on the parametrization of the Kobayashi-Maskawa matrix. Phys. Rev. Lett. 53, 1802–1805 (1984). https://doi.org/10.1103/PhysRevLett.53.1802

    Article  ADS  Google Scholar 

  20. C.A. Baker et al. Improved experimental limit on the electric dipole moment of the neutron. Phys. Rev. Lett. 97, 131801 (2006). https://doi.org/10.1103/PhysRevLett.97.131801

    Article  ADS  Google Scholar 

  21. Y. Nambu, Quasi-particles and gauge invariance in the theory of superconductivity. Phys. Rev. 117, 648–663 (1960). https://doi.org/10.1103/PhysRev.117.648

    Article  ADS  MathSciNet  Google Scholar 

  22. J. Goldstone, Field theories with “Superconductor” solutions. Il Nuovo Cimento (1955–1965) 19(1), 154–164 (1961). ISSN: 1827-6121. https://doi.org/10.1007/BF02812722.

  23. J. Goldstone, A. Salam, S. Weinberg, Broken symmetries. Phys. Rev. 127, 965–970 (1962). https://doi.org/10.1103/PhysRev.127.965

    Article  ADS  MathSciNet  Google Scholar 

  24. G. Aad et al., Combined measurement of the Higgs Boson mass in pp collisions at s = 7 and 8 TeV with the ATLAS and CMS experiments. Phys. Rev. Lett. 114, 191803 (2015). https://doi.org/10.1103/PhysRevLett.114.191803. arXiv: 1503.07589 [hep-ex]

  25. J.M. Cornwall, D.N. Levin, G. Tiktopoulos, Uniqueness of spontaneously broken gauge theories. Phys. Rev. Lett. 30, 1268–1270 (1973). https://doi.org/10.1103/PhysRevLett.31.572. https://doi.org/10.1103/PhysRevLett.30.1268. Erratum: Phys. Rev. Lett. 31, 572 (1973)

  26. J.M. Cornwall, D.N. Levin, G. Tiktopoulos, Derivation of gauge invariance from high-energy unitarity bounds on the S matrix. Phys. Rev. D 10 (1974). https://doi.org/10.1103/PhysRevD.10.1145. Erratum, 1145, https://doi.org/10.1103/PhysRevD.11.972

  27. J.R. Espinosa, M. Quiros, Improved metastability bounds on the Standard Model Higgs mass. Phys. Lett. B353, 257–266 (1995). https://doi.org/10.1016/0370-2693(95)00572-3. arXiv: hep-ph/9504241 [hep-ph]

  28. G. Isidori, G. Ridolfi, A. Strumia, On the metastability of the Standard Model vacuum. Nucl. Phys. B609, 387–409 (2001). https://doi.org/10.1016/S0550-3213(01)00302-9. arXiv: hep-ph/0104016 [hep-ph]

  29. B. Pontecorvo, Mesonium and anti-mesonium. Sov. Phys. JETP 6, 429 (1957). Zh. Eksp. Teor Fiz. 33, 549 (1957)

    Google Scholar 

  30. Z. Maki, M. Nakagawa, S. Sakata, Remarks on the unified model of elementary particles. Prog. Theor. Phys. 28, 870–880 (1962). https://doi.org/10.1143/PTP.28.870

    Article  ADS  Google Scholar 

  31. Q.R. Ahmad et al., Measurement of the rate of ν e + d → p + p + e interactions produced by 8 B solar neutrinos at the Sudbury Neutrino Observatory. Phys. Rev Lett. 87, 071301 (2001). https://doi.org/10.1103/PhysRevLett.87.071301

    Article  ADS  Google Scholar 

  32. Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998). https://doi.org/10.1103/PhysRevLett.81.1562. arXiv: hep-ex/9807003 [hep-ex]

  33. Y. Abe et al., Indication of reactor \(\bar {\nu }_{e}\) disappearance in the Double Chooz experiment. Phys. Rev Lett. 108, 131801 (2012). https://doi.org/10.1103/PhysRevLett.108.131801. arXiv: 1112.6353 [hep-ex]

  34. F.P. An et al., Observation of electron-antineutrino disappearance at Daya Bay. Phys. Rev. Lett. 108, 171803 (2012). https://doi.org/10.1103/PhysRevLett.108.171803. arXiv: 1203.1669 [hep-ex]

  35. J.K. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment. Phys. Rev. Lett. 108, 191802 (2012). https://doi.org/10.1103/PhysRevLett.108.191802. arXiv: 1204.0626 [hep-ex]

  36. N. Agafonova et al., Observation of a first ν τ candidate in the OPERA experiment in the CNGS beam. Phys. Lett. B691, 138–145 (2010). https://doi.org/10.1016/j.physletb.2010.06.022. arXiv: 1006.1623 [hep-ex]

  37. K. Abe et al., Evidence of electron neutrino appearance in a Muon neutrino beam. Phys. Rev. D88(3), 032002 (2013). https://doi.org/10.1103/PhysRevD.88.032002. arXiv: 1304.0841 [hep-ex]

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarica, U. (2019). The Standard Model and the Higgs Boson at the LHC. In: Measurements of Higgs Boson Properties in Proton-Proton Collisions at √s =7, 8 and 13 TeV at the CERN Large Hadron Collider. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-25474-2_1

Download citation

Publish with us

Policies and ethics