Skip to main content

Control Engineering from Classical to Intelligent Control Theory—An Overview

  • Chapter
  • First Online:
Computational Intelligence and Optimization Methods for Control Engineering

Abstract

Control engineering is the engineering discipline that refers to the use of automatic control. This discipline has been intensively enlarging over the past decades due to technological advances and technology affordability. Nowadays, almost all engineering activities exploit automatic control. Therefore, this chapter aims to provide the core knowledge concerning some of the most important features in control design and its methods. It covers basic information to introduce the readers to the other chapters of this volume. Fundamental system properties and specifications for control design such as robustness and stability are explained. In addition to a broad overview of modern control techniques with explicative examples and reference publications, the chapter focuses on four intelligent control techniques, which are fuzzy logic control, neural networks, metaheuristics control tuning, and multi-agent systems. Perspective and new trends of research are also exposed for each presented control technique as well as for control systems in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kozák, S.: State-of-the-art in control engineering. Journal of Electrical Systems and Information Technology 1(1), 1-9 (2014)

    Article  MathSciNet  Google Scholar 

  2. Golob, M. Tovornik, B. and Donlagic, D.: Comparison of the self-tuning on-off controller with the conventional switching controllers. First IEEE Conference on Control Applications, pp. 962-963 (1992)

    Google Scholar 

  3. Chai, T., Joe Qin, S. and Wang, H.: Optimal operational control for complex industrial processes. Annual Reviews in Control, 38(1), 81–92 (2014)

    Article  Google Scholar 

  4. Kuo, B.C.: Automatic control systems. Prentice-Hall Englewood Cliffs, N.J (1975)

    Google Scholar 

  5. Ulusoy, M.: Understanding Control Systems. IN : MathWorks - Videos and Webinar https://www.mathworks.com/videos/understanding-control-systems-part-1-open-loop-control-systems-123419.html   https://www.mathworks.com/videos/understanding-control-systems-part-2-feedback-control-systems-123501.html

  6. Li, Y., Ang, K.H., Chong, G.C.: Patents, software, and hardware for PID control: an overview and analysis of the current art. IEEE Control Systems Magazine 26(1), 42–54 (2006)

    Article  Google Scholar 

  7. Aström, K.J, Hägglund, T.: PID controllers: theory, design, and tuning. In: Research Triangle Park, NC: Instrument society of America, 1-354, (2012)

    Google Scholar 

  8. Cominos, P., and Munro, N.: PID controllers: recent tuning methods and design to specification, In: IEEE Proceedings-Control Theory and Applications, 149(1), pp. 46-53 (2002)

    Article  Google Scholar 

  9. Ribeiro, J. M. S. Santos, M.F., Carmo, M.J., Silva, M.F.: Comparison of PID controller tuning methods: analytical/classical techniques versus optimization algorithms. In: IEEE 18th international Carpathian control conference (ICCC), pp. 533-538. (2017)

    Google Scholar 

  10. Ziegler, J.G., and Nichols, N.B. : Optimum settings for automatic controllers. trans. ASME 64(11), (1942)

    Google Scholar 

  11. Aström, K.J., Hägglund, T., Hang, C.C., Ho, W.O.: Automatic tuning and adaptation for PID controllers - a survey. Control Engineering Practice 1(4), 699–714 (1993)

    Article  Google Scholar 

  12. Ho, W.K., Xu, W.: PID tuning for unstable processes based on gain and phase-margin specifications. IEE Proceedings-Control Theory and Applications 145(5), 392–396 (1998)

    Article  Google Scholar 

  13. Jinggong, L., Yali, X., Donghai, L.: Calculation of PI controller stable region based on D-partition method. ICCAS 2010, Gyeonggi-do, pp. 2185-2189, (2010)

    Google Scholar 

  14. Chen, D., Seborg, D.E.: Design of decentralized PI control systems based on Nyquist stability analysis. Journal of Process Control 13(1), 27–39 (2003)

    Article  Google Scholar 

  15. Cohen, G.: Theoretical consideration of retarded control. Trans. Asme. 75, 827–34 (1953)

    Google Scholar 

  16. Rivera, D.E., Morari, M., Skogestad, S.: Internal model control: PID controller design. Industrial & engineering chemistry process design and development 25(1), 252–265 (1986)

    Article  Google Scholar 

  17. Grassi, E., et al.: Integrated system identification and PID controller tuning by frequency loop-shaping. IEEE Transactions on Control Systems Technology 9(2), 285–294 (2001)

    Article  Google Scholar 

  18. Isaksson, A.J., Graebe, S.F.: Analytical PID parameter expressions for higher order systems. Automatica 35(6), 1121–1130 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Visioli, A.: Tuning of PID controllers with fuzzy logic. IEE Proceedings-Control Theory and Applications 148(1), 1–8 (2001)

    Article  MathSciNet  Google Scholar 

  20. Fang, M.-C., Zhuo, Y.-Z., Lee, Z.Y.: The application of the self-tuning neural network PID controller on the ship roll reduction in random waves. Ocean Engineering 37(7), 529–538 (2010)

    Article  Google Scholar 

  21. Zulu, A.: Towards explicit PID control tuning using machine learning. In: 2017 IEEE AFRICON, pp. 430–433 (2017)

    Google Scholar 

  22. Yuan, S., Zhao, C., Guo, L.: Decentralized PID control of multi-agent systems with nonlinear uncertain dynamics. In: 2017 36th Chinese Control Conference (CCC), pp. 8857–8862 (2017)

    Google Scholar 

  23. Ghosal, S., Darbar, R., Neogi, B., Das, A., Tibarewala, D.N.: Application of swarm intelligence computation techniques in PID controller tuning: a review. In: Proceedings of the International Conference on Information Systems Design and Intelligent Applications. Springer, Berlin, pp. 195–208 (2012)

    Google Scholar 

  24. Gaing, Z.L.: A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans. Energy Convers. 19(2), 384–391 (2004)

    Article  Google Scholar 

  25. Zhang, J., Zhuang, J., Du, H.: Self-organizing genetic algorithm based tuning of PID controllers. Inf. Sci. 179(7), 1007–1018 (2009)

    Article  MATH  Google Scholar 

  26. Hsiao, Y.-T., Chuang, C.-L., Chien, C.C.: Ant colony optimization for designing of PID controllers. In: 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No. 04CH37508) (2004)

    Google Scholar 

  27. Yang, M., Wang, X.: Fuzzy PID controller using adaptive weighted PSO for permanent magnet synchronous motor drives. In: 2009 Second International Conference on Intelligent Computation Technology and Automation, pp. 736–739 (2009)

    Google Scholar 

  28. Kelly, D.J., Burton, P.D., Rahman, M.A.: The application of a neural-fuzzy logic controller to process control. In: Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference, pp. 235–236 (1994)

    Google Scholar 

  29. Ogata, K.: Modern Control Engineering, 4th edn. Prentice Hall PTR, USA (2014)

    MATH  Google Scholar 

  30. Padula, F., Visioli, A.: Optimal tuning rules for proportional-integral-derivative and fractional-order proportional-integral-derivative controllers for integral and unstable processes. IET Control. Theory Appl. 6(6), 776–8 (2012)

    Article  MathSciNet  Google Scholar 

  31. Reynoso-Meza, G., Sanchis, J., Blasco, X., Martínez, M.: Algoritmos Evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado actually perspectivas. Revista Iberoamericana de Automática e Informática Industrial RIAI 10(3), 251–68 (2013)

    Article  Google Scholar 

  32. Mukherjee, S., Pandey, S., Mukhopadhyay, S., Hui, N.B.: Digital pendulum system: genetic fuzzy-based online tuning of PID controller. In: 2014 IEEE 8th International Conference on Intelligent Systems and Control, pp. 23–28 (2014)

    Google Scholar 

  33. Rajesh, R.J., Ananda, C.M.: PSO tuned PID controller for controlling camera position in UAV using 2-axis gimbal. In: IEEE International Conference on Power and Advanced Control Engineering (ICPACE), pp. 128–133 (2015)

    Google Scholar 

  34. Yueneng, Y.A., Ye, Y.A.: Backstepping sliding mode control for uncertain strict-feedback nonlinear systems using neural-network-based adaptive gain scheduling. J. Syst. Eng. Electron. 29(3), 580–6 (2018)

    Google Scholar 

  35. Haykin, S., Van Veen, B.: Signals and Systems. Wiley, New York (2005)

    Google Scholar 

  36. Goodwin, G.C., Graebe, S.F., Salgado, M.E.: Control System Design. Prentice Hall, NJ (2001)

    Google Scholar 

  37. Gozde, H., Cengiz Taplamacioglu, M., Kocaarslan, I.: Comparative performance analysis of artificial Bee colony algorithm in automatic generation control for interconnected reheat thermal power system. Int. J. Electr. Power Energy Syst. 42(1), 16–178 (2012)

    Article  Google Scholar 

  38. Stengel, R.F.: Intelligent failure-tolerant control. IEEE Control Syst. Mag. 11(4), 14–23 (1991)

    Article  Google Scholar 

  39. Garpinger, O., Hägglund, T., Aström, K.J.: Performance and robustness trade-offs in PID control. J. Process Control 24(5), 568–577 (2014)

    Article  Google Scholar 

  40. Soliman, S.A., Mantawy, A.A.: Modern Optimization Techniques with Applications in Electric Power Systems. Springer Science & Business Media, Berlin (2011)

    Google Scholar 

  41. Todorov, E.: Optimal Control Theory. Bayesian Brain: Probabilistic Approaches to Neural Coding, pp. 269–98 (2006)

    Chapter  Google Scholar 

  42. Borrelli, F., Baotić, M., Bemporad, A., Morari, M.: Dynamic programming for constrained optimal control of discrete-time linear hybrid systems. Automatica 41(10), 1709–1721 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Henrion, D., Kruz̆zík, M., Tillmann, W.: Optimal control problems with oscillations, concentrations and discontinuities. Automatica 103, 159–165 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, Y., Li, S., Liao, L.: Near-optimal control of nonlinear dynamical systems: A brief survey. Ann. Rev. Control (2019)

    Google Scholar 

  45. Zhao, Q., Hao, X., Sarangapani, J.: Neural network-based finite-horizon optimal control of uncertain affine nonlinear discrete-time systems. IEEE Trans. Neural Netw. Learn. Syst. 26(3), 486–499 (2015)

    Article  MathSciNet  Google Scholar 

  46. Agarwal, R.P., Baleanu, D., Nieto, J.J., Torres, D.F., Zhou, Y.: A survey on fuzzy fractional differential and optimal control nonlocal evolution equations. J. Comput. Appl. Math. 339, 3–29 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rao, A.V.: A survey of numerical methods for optimal control. Adv. Astronaut. Sci. 135(1), 497–528 (2009)

    Google Scholar 

  48. Minchala-Avila, L.I., Garza-Castañón, L.E., Vargas-Martínez, A., Zhang, Y.: A review of optimal control techniques applied to the energy management and control of microgrids. Procedia Comput. Sci. 52, 780–787 (2015)

    Article  Google Scholar 

  49. Bhattacharyya, S.P., Keel, L.H.: Robust Control: The Parametric Approach. Advances in Control Education, pp. 49–52. Pergamon (1994)

    Google Scholar 

  50. Vinnicombe, G.: Uncertainty and Feedback: H-\(\infty \) Loop-shaping and the [nu]-gap Metric. World Scientific (2001)

    Google Scholar 

  51. Kim, Y.M.: Robust data driven H-infinity control for wind turbine. J. Frankl. Inst. 353(13), 3104–3117 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Li, P., Zhu, G.: Robust internal model control of servo motor based on sliding mode control approach. ISA Trans. (2019)

    Google Scholar 

  53. Abdallah, C., Dawson, D.M., Dorato, P., Jamshidi, M.: Survey of robust control for rigid robots. IEEE Control Syst. Mag. 11(2), 24–30 (1991)

    Article  MATH  Google Scholar 

  54. Sage, H.G., De Mathelin, M.F., Ostertag, E.: Robust control of robot manipulators: a survey. Int. J. Control 72(16), 1498–1522 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  55. Deveci, O., Kasnakoğlu, C.: MIMO nonlinear modeling and robust control of standalone dc photovoltaic systems. Int. J. Hydrog. Energy 42(28), 18064–18080 (2017)

    Article  Google Scholar 

  56. Kim, S., Park, J., Kang, S., Kim, P.Y., Kim, H.J.: A robust control approach for hydraulic excavators using \(\mu \)-synthesis. Int. J. Control. Autom. Syst. 16(4), 1615–1628 (2018)

    Article  Google Scholar 

  57. Malekzadeh, M.: Robust control of spacecraft: application to an actuated simulator. Int. J. Control. Autom. Syst. 16(2), 896–903 (2018)

    Article  MathSciNet  Google Scholar 

  58. Harris, N.: Stochastic Control (2011)

    Google Scholar 

  59. Aström, K.J., Wittenmark, B.: Adaptive Control. Courier Corporation (2013)

    Google Scholar 

  60. Chen, J., Yao, W., Zhang, C.K., Ren, Y., Jiang, L.: Design of robust MPPT controller for grid-connected PMSG-Based wind turbine via perturbation observation based nonlinear adaptive control. Renew. Energy 134, 478–495 (2019)

    Article  Google Scholar 

  61. Abbaspour, A., Khalilnejad, A., Chen, Z.: Robust adaptive neural network control for PEM fuel cell. Int. J. Hydrog. Energy 41(44), 20385–20395 (2016)

    Article  Google Scholar 

  62. Tzafestas, G., Spyros and others: Methods and Applications of Intelligent Control (1997)

    Chapter  MATH  Google Scholar 

  63. Siddique, N.: Intelligent Control: A Hybrid Approach Based on Fuzzy Logic, Neural Networks and Genetic Algorithms. Springer, Berlin (2013)

    Google Scholar 

  64. Xiong, N., Molina, D., Ortiz, M.L., Herrera, F.: A walk into metaheuristics for engineering optimization: principles, methods and recent trends. Int. J. Comput. Intell. Syst. 8(4), 606–636 (2015)

    Article  Google Scholar 

  65. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng.Softw. 1(95), 51–67 (2016)

    Article  Google Scholar 

  66. Di Tollo, G., Lardeux, F., Maturana, J., Saubion, F.: An experimental study of adaptive control for evolutionary algorithms. Appl. Soft Comput. 35, 359–72 (2015)

    Article  Google Scholar 

  67. Reynoso-Meza, G., Blasco, X., Sanchis, J., Martínez, M.: Controller tuning using evolutionary multi-objective optimisation: current trends and applications. Control Eng. Practice 28, 58–73 (2014)

    Article  Google Scholar 

  68. Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley, New York (2010)

    Book  Google Scholar 

  69. Karaboga, D., Basturk, B.: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: International Fuzzy Systems Association World Congress, pp. 789–798. Springer, Berlin (2007)

    Google Scholar 

  70. Dorigo, M., Birattari, M.: Ant Colony Optimization. Springer, Berlin (2010)

    Google Scholar 

  71. Yang, X.S.: A new metaheuristic bat-inspired algorithm. Nature Inspired Cooperative Strategies For Optimization, pp. 65–74. Springer, Berlin (2010)

    Google Scholar 

  72. Das, S., Biswas, A., Dasgupta, S., Abraham, A.: Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications. Found. Comput. Intell. 3, 23–55 (2009)

    Google Scholar 

  73. Rajabioun, R.: Cuckoo optimization algorithm. Appl. Soft Comput. 11(8), 5508–18 (2011)

    Article  Google Scholar 

  74. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–73 (2017)

    Article  Google Scholar 

  75. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer Science & Business Media, Berlin (2006)

    Google Scholar 

  76. Fister, I., Fister Jr., I., Yang, X.S., Brest, J.: A comprehensive review of firefly algorithms. Swarm Evol. Comput. 13, 34–46 (2013)

    Article  Google Scholar 

  77. Pan, W.T.: A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl.-Based Syst. 26, 69–74 (2012)

    Article  Google Scholar 

  78. Yang, X.S.: Flower pollination algorithm for global optimization. In: International Conference on Unconventional Computing and Natural Computation, pp. 240–249. Springer, Berlin (2012)

    Chapter  Google Scholar 

  79. Davis, L.: Handbook of Genetic Algorithms (1991)

    Google Scholar 

  80. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  81. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  82. Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: IEEE Congress on Evolutionary Computation, pp. 4661–4667 (2007)

    Google Scholar 

  83. Sadollah, A., Bahreininejad, A., Eskandar, H., Hamdi, M.: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 13(5), 2592–612 (2013)

    Article  Google Scholar 

  84. Coello, C.C., Lechuga, M.S.: MOPSO: A proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation, vol. 2, pp. 1051–1056 (2002)

    Google Scholar 

  85. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: International Conference on Parallel Problem Solving from Nature, pp. 849–858. Springer, Berlin (2000)

    Chapter  Google Scholar 

  86. Kennedy, J.: Particle swarm optimization. In: Encyclopedia of Machine Learning, pp. 760–766 (2010)

    Google Scholar 

  87. Van Laarhoven, P.J., Aarts, E.H.: Simulated Annealing. Simulated Annealing: Theory and Applications, pp. 7–15. Springer, Berlin (1987)

    Google Scholar 

  88. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput.-Aided Des. 43(3), 303–15 (2011)

    Article  Google Scholar 

  89. Glover, F.: Tabu search-part I. ORSA J. Comput. 1(3), 190–206 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  90. Zhao, S.Z., Suganthan, P.N.: Two-lbests based multi-objective particle swarm optimizer. Eng. Optim. 43(1), 1–7 (2011)

    Article  MathSciNet  Google Scholar 

  91. Nagaraj, B., Murugananth, N.: A comparative study of PID controller tuning using GA, EP, PSO and ACO. In: IEEE International Conference On Communication Control And Computing Technologies, pp. 305–313 (2010)

    Google Scholar 

  92. Kim, D.H.: Hybrid GA-BF based intelligent PID controller tuning for AVR system. Appl. Soft Comput. 11(1), 11–22 (2011)

    Article  Google Scholar 

  93. Ou, C., Lin, W.: Comparison between PSO and GA for parameters optimization of PID controller. In: IEEE International Conference on Mechatronics and Automation, pp. 2471–2475 (2006)

    Google Scholar 

  94. Seng, T.L., Khalid, M.B., Yusof, R.: Tuning of a neuro-fuzzy controller by genetic algorithm. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 29(2), 226–236 (1999)

    Google Scholar 

  95. Kim, J.S., Kim, J.H., Park, J.M., Park, S.M., Choe, W.Y., Heo, H.: Auto tuning PID controller based on improved genetic algorithm for reverse osmosis plant. World Acad. Sci. Eng. Technol. 47(2), 384–9 (2008)

    Google Scholar 

  96. Ayala, H.V., Dos Santos Coelho, L.: Tuning of PID controller based on a multiobjective genetic algorithm applied to a robotic manipulator. Expert Syst. Appl. 39(10), 8968–74 (2012)

    Article  Google Scholar 

  97. Panda, S.: Multi-objective evolutionary algorithm for SSSC-based controller design. Electr. Power Syst. Res. 79(6), 937–44 (2009)

    Article  Google Scholar 

  98. Algoul, S., Alam, M.S., Hossain, M.A., Majumder, M.A.: Multi-objective optimal chemotherapy control model for cancer treatment. Med. Biol. Eng. Comput. 49(1), 51–65 (2009)

    Article  Google Scholar 

  99. Chipperfield, A.J., Bica, B., Fleming, P.J.: Fuzzy scheduling control of a gas turbine aero-engine: a multiobjective approach. IEEE Trans. Ind. Electron. 49(3), 536–48 (2002)

    Article  Google Scholar 

  100. Zhao, S.Z., Iruthayarajan, M.W., Baskar, S., Suganthan, P.N.: Multi-objective robust PID controller tuning using two lbests multi-objective particle swarm optimization. Inform. Sci. 181(16), 3323–35 (2011)

    Article  Google Scholar 

  101. Guazzelli, P.R., Pereira, W.C., Oliveira, C.M., Castro, A.G., Aguiar, M.L.: weighting factors optimization of predictive torque control of induction motor by multi-objective genetic algorithm. IEEE Trans. Power Electron. (2018)

    Google Scholar 

  102. Kumar, L., Narang, D.: Tuning of fractional order PI D controllers using evolutionary optimization for pid tuned synchronous generator excitation system. IFAC-PapersOnLine. 51(4), 859–64 (2018)

    Article  Google Scholar 

  103. Laware, A.R., Talange, D.B., Bandal, V.S.: Evolutionary optimization of sliding mode controller for level control system. ISA Trans. 83, 199–213 (2018)

    Article  Google Scholar 

  104. Ye, Y., Yin, C.B., Gong, Y., Zhou, J.J.: Position control of nonlinear hydraulic system using an improved PSO based PID controller. Mech. Syst. Signal Process. 83, 241–59 (2017)

    Article  Google Scholar 

  105. Bingul, Z., Karahan, O.: Comparison of PID and FOPID controllers tuned by PSO and ABC algorithms for unstable and integrating systems with time delay. Optim. Control Appl. Methods 39(4), 1431–50 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  106. Pan, I., Das, S.: Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Trans. 62, 19–29 (2016)

    Article  Google Scholar 

  107. Liu, C., Hsu, Y.: Design of a self-tuning PI controller for a STATCOM using particle swarm optimization. IEEE Trans. Ind. Electron. 57(2), 702–715 (2010)

    Article  Google Scholar 

  108. Castelo Damasceno, N., Gabriel Filho, O.: PI controller optimization for a heat exchanger through metaheuristic bat algorithm, particle swarm optimization, flower pollination algorithm and cuckoo search algorithm. IEEE Lat. Am. Trans. 15(9), 1801–1807 (2017)

    Article  Google Scholar 

  109. Das Sharma, K., Chatterjee, A. Rakshit, A.: A hybrid approach for design of stable adaptive fuzzy controllers employing lyapunov theory and particle swarm optimization. IEEE Trans. Fuzzy Syst. 17(2), 329–342 (2009)

    Article  Google Scholar 

  110. Kuttomparambil Abdulkhader, H., Jacob, J. Mathew, A.T.: Fractional-order lead-lag compensator-based multi-band power system stabiliser design using a hybrid dynamic GA-PSO algorithm. IET IET Gener., Transm. Distrib. 12(13), 3248–3260 (2018)

    Article  Google Scholar 

  111. Tarczewski, T., Grzesiak, L.M.: An application of novel nature-inspired optimization algorithms to auto-tuning state feedback speed controller for PMSM. IEEE Trans. Ind. Appl. 54(3), 2913–2925 (2018)

    Article  Google Scholar 

  112. Hanifah, R.A., Toha, S.F., Ahmad, S., Hassan, M.K.: Swarm-intelligence tuned current reduction for power-assisted steering control in electric vehicles. IEEE Trans. Ind. Electron. 65(9), 7202–7210 (2018)

    Article  Google Scholar 

  113. Castillo, O., Neyoy, H., Soria, J., Melin, P., Valdez, F.: A new approach for dynamic fuzzy logic parameter tuning in ant colony optimization and its application in fuzzy control of a mobile robot. Appl. Soft Comput. 28, 150–9 (2015)

    Article  Google Scholar 

  114. Blondin, M.J., Sanchis, J., Sicard, P., Herrero, J.M.: New optimal controller tuning method for an AVR system using a simplified Ant colony optimization with a new constrained Nelder-Mead algorithm. Appl. Soft Comput. 62, 216–29 (2018)

    Article  Google Scholar 

  115. Elsisi, M., Soliman, M., Aboelela, M.A.S., Mansour, W.: Model predictive control of plug-in hybrid electric vehicles for frequency regulation in a smart grid. IET Gener. Transm. Distrib. 11(16), 3974–3983 (2017)

    Article  Google Scholar 

  116. Ho, S., Shu, L.-S., Ho, S.Y.: Optimizing fuzzy neural networks for tuning PID controllers using an orthogonal simulated annealing algorithm OSA. IEEE Trans. Fuzzy Syst. 14(3), 421–434 (2006)

    Article  Google Scholar 

  117. Abido, M.A.: Simulated annealing based approach to PSS and FACTS based stabilizer tuning. Int. J. Electr. Power Energy Syst. 22(4), 247–58 (2000)

    Article  Google Scholar 

  118. Jain, R., Sivakumaran, N., Radhakrishnan, T.K.: Design of self tuning fuzzy controllers for nonlinear systems. Expert Syst. Appl. 38(4), 4466–76 (2011)

    Article  Google Scholar 

  119. Precup, R.E., David, R.C., Petriu, E.M.: Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity. IEEE Trans. Ind. Electr. 64(1), 527–34 (2017)

    Article  Google Scholar 

  120. Madadi, A., Motlagh, M.M.: Optimal control of DC motor using grey wolf optimizer algorithm. Tech. J. Eng. Appl. Sci. 4(4), 373–9 (2014)

    Google Scholar 

  121. Hasanien, H.M.: Performance improvement of photovoltaic power systems using an optimal control strategy based on whale optimization algorithm. Electr. Power Syst. Res. 157, 168–76 (2018)

    Article  Google Scholar 

  122. Guha, D., Roy, P.K., Banerjee, S.: Optimal tuning of 3 degree-of-freedom proportional-integral-derivative controller for hybrid distributed power system using dragonfly algorithm. Comput. Electr. Eng. 72, 137–53 (2018)

    Article  Google Scholar 

  123. Gorripotu, T.S., Samalla, H., Rao, C.J., Azar, A.T., Pelusi, D.: TLBO algorithm optimized fractional-order PID controller for AGC of interconnected power system. In: Soft Computing in Data Analytics, pp. 847–855. Springer, Berlin (2019)

    Google Scholar 

  124. Khalghani, M.R., Khooban, M.H.: A novel self-tuning control method based on regulated bi-objective emotional learning controller’s structure with TLBO algorithm to control DVR compensator. Appl. Soft Comput. 24, 912–22 (2014)

    Article  Google Scholar 

  125. Rajinikanth, V., Satapathy, S.C.: Design of controller for automatic voltage regulator using teaching learning based optimization. Procedia Technol. 21, 295–302 (2015)

    Article  Google Scholar 

  126. Chatterjee, S., Mukherjee, V.: PID controller for automatic voltage regulator using teaching-learning based optimization technique. Int. J. Electr. Power Energy Syst. 77, 418–29 (2016)

    Article  Google Scholar 

  127. Sahu, B.K., Pati, T.K., Nayak, J.R., Panda, S., Kar, S.K.: A novel hybrid LUS-TLBO optimized fuzzy-PID controller for load frequency control of multi-source power system. Int. J. Electr. Power Energy Syst. 74, 58–69 (2016)

    Article  Google Scholar 

  128. Sheng, W., Bao, Y.: Fruit fly optimization algorithm based fractional order fuzzy-PID controller for electronic throttle. Nonlinear Dyn. 73(1–2), 611–9 (2013)

    Article  MathSciNet  Google Scholar 

  129. Sánchez, H.S., Padula, F., Visioli, A., Vilanova, R.: Tuning rules for robust FOPID controllers based on multi-objective optimization with FOPDT models. ISA Trans. 66, 344–61 (2017)

    Article  Google Scholar 

  130. Ramadan, H.S.: Optimal fractional order PI control applicability for enhanced dynamic behavior of on-grid solar PV systems. Int. J. Hydrog. Energy 42(7), 4017–31 (2017)

    Article  Google Scholar 

  131. Bagis, A.: Tabu search algorithm based PID controller tuning for desired system specifications. J. Frankl. Inst. 348(10), 2795–812 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  132. Sambariya, D.K., Prasad, R.: Optimal tuning of fuzzy logic power system stabilizer using harmony search algorithm. Int. J. Fuzzy Syst. 17(3), 457–70 (2015)

    Article  Google Scholar 

  133. Blasco Ferragud, F.X.: Control predictivo basado en modelos mediante técnica de optimización heurística: Aplicación a procesos no lineales y multivariables. Ph.D. Thesis 1999 (in Spanish) Editorial UPV. ISBN 84-699-5429-6

    Google Scholar 

  134. Pedersen, M.E.: Good Parameters for Differential Evolution. Magnus Erik Hvass Pedersen (2010)

    Google Scholar 

  135. Hussain, K., Salleh, M.N., Cheng, S., Shi, Y.: Metaheuristic research: a comprehensive survey. Artif. Intell. Rev. 1–43 (2018)

    Google Scholar 

  136. Jantzen, J.: Foundations of Fuzzy Control: A Practical Approach. Wiley, New York (2013)

    Book  Google Scholar 

  137. Martinez, O.A., Cardona, M.: State of the art and future trends on unmanned aerial vehicle. In: 2018 International Conference on Research in Intelligent and Computing in Engineering (RICE) (2018)

    Google Scholar 

  138. Xiang, X., Yu, C., Lapierre, L., Zhang, J., Zhang, Q.: Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles. Int. J. Fuzzy Syst. 20(2), 572–86 (2018)

    Article  MathSciNet  Google Scholar 

  139. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)

    Article  MATH  Google Scholar 

  140. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  141. Gao, Q., Feng, G., Wang, Y., Qiu, J.: Universal fuzzy models and universal fuzzy controllers for stochastic nonaffine nonlinear systems. IEEE Trans. Fuzzy Syst. 21(2), 328–341 (2013)

    Article  Google Scholar 

  142. Messai, A., Mellit, A., Guessoum, A., Kalogirou, S.A.: Maximum power point tracking using a GA optimized fuzzy logic controller and its FPGA implementation. Solar Energy 85(2), 265–77 (2011)

    Article  Google Scholar 

  143. Bingül, Z., Karahan, O.: A fuzzy logic controller tuned with PSO for 2 DOF robot trajectory control. Expert Syst. Appl. 38(1), 1017–31 (2011)

    Article  Google Scholar 

  144. Juang, C.F., Chang, Y.C.: Evolutionary-group-based particle-swarm-optimized fuzzy controller with application to mobile-robot navigation in unknown environments. IEEE Trans. Fuzzy Syst. 19(2), 379–92 (2011)

    Article  Google Scholar 

  145. Zaki, A.M., El-Bardini, M., Soliman, F.A., Sharaf, M.M.: Embedded two level direct adaptive fuzzy controller for DC motor speed control. Ain Shams Eng. J. 9(1), 65–75 (2018)

    Article  Google Scholar 

  146. Chen, B., Liu, X., Liu, K., Shi, P., Lin, C.: Direct adaptive fuzzy control for nonlinear systems with time-varying delays. Inform. Sci. 180(5), 776–92 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  147. Boulkroune, A., Bounar, N., Farza, M.: Indirect adaptive fuzzy control scheme based on observer for nonlinear systems: a novel SPR-filter approach. Neurocomputing 135, 378–87 (2014)

    Article  Google Scholar 

  148. Boulkroune, A., M’Saad, M., Farza, M.: Fuzzy approximation-based indirect adaptive controller for multi-input multi-output non-affine systems with unknown control direction. IET Control Theory Appl. 6(17), 2619–29 (2012)

    Article  MathSciNet  Google Scholar 

  149. Piltan, F., Sulaiman, N., Gavahian, A., Soltani, S., Roosta, S.: Design mathematical tunable gain PID-like sliding mode fuzzy controller with minimum rule base. Int. J. Robot. Autom. 2(3), 146–56 (2011)

    Google Scholar 

  150. Civelek, Z., Lüy, M., Cam, E., Barisci, N.: Control of pitch angle of wind turbine by fuzzy PID controller. Intell. Autom. Soft Comput. 22(3), 463–71 (2016)

    Article  Google Scholar 

  151. Noshadi, A., Shi, J., Lee, W.S., Shi, P., Kalam, A.: Optimal PID-type fuzzy logic controller for a multi-input multi-output active magnetic bearing system. Neural Comput. Appl. 27(7), 2031–46 (2016)

    Article  Google Scholar 

  152. Guo, L., Hung, J.Y., Nelms, R.M.: Comparative evaluation of sliding mode fuzzy controller and PID controller for a boost converter. Electr. Power Syst. Res. 81(1), 99–106 (2011)

    Article  Google Scholar 

  153. Yi, Y., Zheng, W.X., Sun, C., Guo. L.: DOB fuzzy controller design for non-gaussian stochastic distribution systems using two-step fuzzy identification. IEEE Trans. Fuzzy Syst. 24(2), 401–418 (2016)

    Article  Google Scholar 

  154. C. Tao, Taur, J., Chang, Y., Chang, C.: A novel fuzzy-sliding and fuzzy-integral-sliding controller for the twin-rotor multi-input-multi-output system. IEEE Trans. Fuzzy Syst. 18(5), 893–905 (2010)

    Article  Google Scholar 

  155. Santos, M., Lopez, V., Morata, F.: Intelligent fuzzy controller of a quadrotor. In: IEEE International Conference on Intelligent Systems and Knowledge Engineering, pp. 141–146 (2010)

    Google Scholar 

  156. Khooban, M.H., Vafamand, N., Liaghat, A., Dragicevic, T.: An optimal general type-2 fuzzy controller for urban traffic network. ISA Trans. 66, 335–43 (2017)

    Article  Google Scholar 

  157. Oh, S.K., Kim, W.D., Pedrycz, W.: Design of optimized cascade fuzzy controller based on differential evolution: simulation studies and practical insights. Eng. Appl. Artif. Intell. 25(3), 520–32 (2012)

    Article  Google Scholar 

  158. Juang, C.F., Chen, Y.H., Jhan, Y.H.: Wall-following control of a hexapod robot using a data-driven fuzzy controller learned through differential evolution. IEEE Trans. Ind. Electron. 62(1), 611–9 (2015)

    Article  Google Scholar 

  159. Precup, R.E., Hellendoorn, H.: A survey on industrial applications of fuzzy control. Comput. Ind. 62(3), 213–26 (2011)

    Article  Google Scholar 

  160. Qiu, J., Gao, H., Ding, S.X.: Recent advances on fuzzy-model-based nonlinear networked control systems: a survey. IEEE Trans. Ind. Electron. 63(2), 1207–17 (2016)

    Article  Google Scholar 

  161. Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(5), 676–97 (2006)

    Article  Google Scholar 

  162. Sala, A., Guerra, T.M., Babuška, R.: Perspectives of fuzzy systems and control. Fuzzy Sets Syst. 156(3), 432–44 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  163. Strietzel, R.: Tuning of fuzzy controllers-an overview. IFAC Proc. Vol. 33(25), 313–318 (2000)

    Article  Google Scholar 

  164. Marugán, A.P., Márquez, F.P., Perez, J.M., Ruiz-Hernández, D.: A survey of artificial neural network in wind energy systems. Appl. Energy 228, 1822–36 (2012)

    Article  Google Scholar 

  165. Heinen, M.R., Osório, F.S., Heinen, F.J., Kelber, C.: Seva3d: Using artificial neural networks to autonomous vehicle parking control. In: IEEE International Joint Conference on Neural Network Proceedings, pp. 4704–4711 (2006)

    Google Scholar 

  166. Khalid, M., Omatu, S.: A neural network controller for a temperature control system. IEEE Control Syst. Mag. 12(3), 58–64 (1992)

    Article  Google Scholar 

  167. Ligutan, D.D., Abad, A.C., Dadios, E.P.: Adaptive robotic arm control using artificial neural network. In: IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), pp. 1–6 (2018)

    Google Scholar 

  168. Thibault, J., Grandjean, B.P.: Neural networks in process control-a survey. In: Advanced Control of Chemical Processes, pp. 251–260. Pergamon (1992)

    Google Scholar 

  169. Bose, B.K.: Neural network applications in power electronics and motor drives-an introduction and perspective. IEEE Trans. Ind. Electron. 54(1), 14–33 (2007)

    Article  Google Scholar 

  170. Hunt, K.J., Sbarbaro, D., Zbikowski, R., Gawthrop, P.J.: Neural networks for control systems-a survey. Automatica 28(6), 1083–112 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  171. Hagan, M.T., Demuth, H.B., Jesús, O.D.: An introduction to the use of neural networks in control systems. Int. J. Robust Nonlinear Control.: IFAC-Affil. J. 12(11), 959–85 (2002)

    Article  MATH  Google Scholar 

  172. Balakrishnan, S.N., Weil, R.D.: Neurocontrol: a literature survey. Math. Comput. Model. 23(1–2), 101–17 (1996)

    Article  MATH  Google Scholar 

  173. Cervantes, J., Yu, W., Salazar, S., Chairez, I.: Takagi-Sugeno dynamic neuro-fuzzy controller of uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. 25(6), 1601–15 (2017)

    Article  Google Scholar 

  174. Wang, L., Zeng, Y., Chen, T.: Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Syst. Appl. 42(2), 855–63 (2015)

    Article  Google Scholar 

  175. Cordón, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets Syst. 141(1), 5–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  176. Gulzar, M.M., Rizvi, S.T., Javed, M.Y., Munir, U., Asif, H.: Multi-agent cooperative control consensus: a comparative review. Electronics 7(2), 1–22 (2018)

    Article  Google Scholar 

  177. Weidlich, A., Vogt, H., Krauss, W., Spiess, P., Jawurek, M., Johns, M., Karnouskos, S.: Decentralized intelligence in energy efficient power systems. In: Handbook of Networks in Power Systems I, pp. 467–486. Springer, Berlin (2012)

    Google Scholar 

  178. McArthur, S.D., Davidson, E.M., Catterson, V.M., Dimeas, A.L., Hatziargyriou, N.D., Ponci, F., Funabashi, T.: Multi-agent systems for power engineering applications-Part I: concepts, approaches, and technical challenges. IEEE Trans. Power Syst. 22(4), 1743–52 (2007)

    Article  Google Scholar 

  179. Pang, Q., Gao, H., Minjiang, X.: Multi-agent based fault location algorithm for smart distribution grid. In: IET Conference Proceedings (2010)

    Google Scholar 

  180. Kantamneni, A., Brown, L.E., Parker, G., Weaver, W.W.: Survey of multi-agent systems for microgrid control. Eng. Appl. Artif. Intell. 45, 192–203 (2015)

    Article  Google Scholar 

  181. Dong, X., Yu, B., Shi, Z., Zhong, Y.: Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Trans. Control Syst. Technol. 23(1), 340–8 (2015)

    Article  Google Scholar 

  182. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc IEEE 95(1), 215–33 (2007)

    Article  MATH  Google Scholar 

  183. Ren, W., Beard, R.W., Atkins, E.M.: A survey of consensus problems in multi-agent coordination. In: IEEE American Control Conference, pp. 1859–1864 (2005)

    Google Scholar 

  184. Oh, K.K., Park, M.C., Ahn, H.S.: A survey of multi-agent formation control. Automatica 53, 424–40 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  185. Nathan, P.T., Almurib, H.A., Kumar, T.N.: A review of autonomous multi-agent quad-rotor control techniques and applications. In: 4th International Conference on Mechatronics, pp. 1-7 (2011)

    Google Scholar 

  186. Leitão, P.: Agent-based distributed manufacturing control: a state-of-the-art survey. Eng. Appl. Artif. Intell. 22(7), 979–91 (2009)

    Article  Google Scholar 

  187. Qin, J., Ma, Q., Shi, Y., Wang, L.: Recent advances in consensus of multi-agent systems: a brief survey. IEEE Trans. Ind. Electron. 64(6), 4972–83 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Maude Josée Blondin is supported by Fonds de recherche Nature et technologies du Québec. Panos M. Pardalos is supported by the Paul and Heidi Brown Preeminent Professorship in ISE, University of Florida (USA) and a Humboldt Research Award (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maude Josée Blondin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blondin, M.J., Sanchis Sáez, J., Pardalos, P.M. (2019). Control Engineering from Classical to Intelligent Control Theory—An Overview. In: Blondin, M., Pardalos, P., Sanchis Sáez, J. (eds) Computational Intelligence and Optimization Methods for Control Engineering. Springer Optimization and Its Applications, vol 150. Springer, Cham. https://doi.org/10.1007/978-3-030-25446-9_1

Download citation

Publish with us

Policies and ethics