Skip to main content

Basic Components of Telecommunication Systems

  • Chapter
  • First Online:
High-Speed Digital System Design

Abstract

This chapter presents the results of the analysis of the basic components of up-to-date high-speed telecommunication systems. Figuratively speaking, here is a detailed description of the main building blocks of which the architecture of up-to-date telecommunication systems is being built: waveguides, adapters, attenuators, filters, tappers, dividers and power combiners, encoders, coaxial communication lines, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belous, A., Merdanov, M., & Shvedau, S. (2014). Microwave electronics in radar systems and communications. Technical encyclopedia (p. 688). Moscow: Technosphere.

    Google Scholar 

  2. Blackwood, M. (2014). Special requirements for powerful passive microwave components. Electronic Components, 1, 88–91.

    Google Scholar 

  3. Blackwood, M. High power RF and microwave passive considerations and constraints. www.highfrequencyeiectronics.com

  4. Smolyaninov, I. (2014). Intellectual encoders with output switching signals. Electronic Components, 1, 80–83.

    Google Scholar 

  5. Novikov, S. (2014). State-of-the-art technologies of radio frequency components. Electronic Components, 7, 18–20.

    Google Scholar 

  6. Delisle, J.-J. (2014, May). GaN enables RF where LDMOS and GaAs can’t. Electronic Design Europe.

    Google Scholar 

  7. Ward-Foxton, S. The last piece of the puzzle. electronicspecifier.com

  8. Chernykh, M. (2014). The choice of design and technology parameters of high-power microwave MESFET-transistors based on silicon carbide. Electronics: NTB, 1, 160–164.

    Google Scholar 

  9. Lebedev, A., & Sbruev, S. (2004). SiC-electronics. Past, present, future. Electronics: NTB, 6.

    Google Scholar 

  10. Saddow, S. E., & Agarwal, A. (Eds.) (2004). Advances in silicon carbide processing and applications (218 р.). Artech House, Inc.

    Google Scholar 

  11. Gudkov, V., Mokeev, A., Zemlyakov, V., et al. (2007). A field-effect transistor with a Schottky gate based on 4H-SiC and an estimate of its microwave characteristics. Electronic Equipment. 3(491), (Series: Microwave Technology).

    Google Scholar 

  12. Blank, T., Goldberg, Yu., Posse, E., & Soldatenkov, F. (2010). The mechanism of current flow in an ohmic contact to n-4H-SiC. Physics and Technology of Semiconductors, 44(4), 463–466.

    Google Scholar 

  13. Chernykh, M., Tsotsorin, A., & Kozhevnikov, V. (2015). Modeling the impact of channel layer formation parameters on the electrical characteristics of a powerful microwave Schottky field-effect silicon carbide transistor (Bulletin of Voronezh State University, No.2) (Series: Physics, Mathematics) (in Russian).

    Google Scholar 

  14. Chernykh, M., Tsotsorin, A., & Kozhevnikov, V. (2015). Simulating the influence of buffer layer parameters on the static characteristics of high-power microwave transistors with Schottky gate based on silicon carbide II Electronic equipment. Editions 2–3(236–237), 70–80. (Series 2. Semiconductor devices) (in Russian).

    Google Scholar 

  15. Mnatsakanov, T., Pomortseva, L., & Yurkov S. (2011). A semi-empirical model of carrier mobility in silicon carbide for analyzing its dependence on temperature and doping. Physics and Technology of Semiconductors. 35, Edition 4 (in Russian).

    Google Scholar 

  16. Gulyaev, Y. V., & Bagdasaryan, A. S. (2004). Acoustoelectronic hardware devices of communication systems. - Collection of works of the international scientific-technical conference. In Information technologies and modeling of devices and technical processes to ensure quality and reliability (No. 1, pp. 3–5). M.: MSUIECS. ISBN 5-8068-0344-9 (in Russian).

    Google Scholar 

  17. Bagdasaryan, A. S., Bagdasaryan, S. A., Dneprovski, V. G., & Karapetyan, G. Y. (2012). To issue of surface acoustic wave piezoelectric devices development 180 c. Piezoelectric and related materials: Research and applications. New York: Nova Science Publishers Inc.

    Google Scholar 

  18. Gulyaev, Y. V., & Bagdasaryan, A. S. (2003). SAW filters. Status and prospects of development. Radio Engineering, 8, 15 (in Russian).

    Google Scholar 

  19. Bagdasaryan, A. S., Gulyaev, Y. V., Nikitov, S. A., Bagdasaryan, S. A., Sinitsyna, T. V., Butenko, V. V., Mashinin, O. V., & Praporschikov, V. V. (2008). Narrow-band SAW filters in radio frequency identification systems (RFID). Radio Engineering and Electronics, 53(7), 887–894 (in Russian).

    Google Scholar 

  20. Bagdasaryan, A., Bagdasaryan, S., Karapetyan, G., Mashinin, O., & Sinitsyna T. (2014). Impedance SAW filters for telecommunication systems. Russian priority. Scientific and Technical JournalElectronics: NTB”, 7, 48–60 (in Russian).

    Google Scholar 

  21. Bagdasaryan, A. S., & Sinitsyna, T. V. (2004). Selective acoustoelectronic devices based on unidirectional structures of surface acoustic waves. In Academy of Engineering Sciences named after A.M. Prokhorov (104 p.). M.: Publishing House. ISBN 5-7781-0033­7 (in Russian).

    Google Scholar 

  22. Kukk, K. I., Bagdasaryan, A. S., Zaitsev, V. E., Zlotnikova, E. A., Lokshin, M. G., Neretina, S. P., Sabitov, R. A., Samoilov, A. I., Sevastyanov, D. I., Sergeev, V. I., Taube, L. M., Khazarchiev, Y. D., Khlebnikov, V. I., & Shestakov, S. P. (2005). Development and implementation of scientific, technical and organizational solutions for the construction of a new generation state television network. Science and Technology in Industry, 2, 31–35 (in Russian).

    Google Scholar 

  23. Sinitsyna, T. V., Praporchtshikov, V. V., & Bagdasarian, A. S. (2004). Saw resonator filters for communications systems. In Collection: 4th International Crimean Conference 2004: Microwave and Telecommunication Technology. - Conference Proceedings, CriMiCo’04 sponsors: Sevastopol National Technical University, Ukraine, FSUE, SCRRTI, Moscow, Russia, Interface­MFG Co. Moscow, Russia, OJS SPE, Saturn, Kiev, Ukraine, NTUU KPI, SRI of Telecommunications, Kiev, Ukraine. Sevastopol.

    Google Scholar 

  24. Butenko, V. V., & Bagdasaryan, A. S. (2014). Radio frequency identification (RFID) tags on surface acoustic waves and systems based thereon. Patent Review. In Proceedings of the Research Institute of Radio, 3, 2–11 (in Russian).

    Google Scholar 

  25. Bessonov, L. A. (1974). Linear electrical circuits (523 p.). M.: Higher School (in Russian).

    Google Scholar 

  26. Bagdasaryan, A. S, Karapetyan, G. Y., & Kondratiev, S. N. Application for the invention No 5066042/22/039877 dd. 24/08/92. Favourable decision No.139 dd. 27/07/93. SAW device. (in Russian).

    Google Scholar 

  27. Bagdasaryan, A. S., Kondratiev, S. N., & Semenov, V. V. Application for the invention No 5066037/22/039878 dd. 24/08/92. Favourable decision No.140 dd. 27/07/93. SAW band-stop filter. (in Russian).

    Google Scholar 

  28. Bagdasaryan, A. S., & Karapetyan, G. Y. (1998). Impedance SAW filters (79 p.). M.: MPO. (in Russian).

    Google Scholar 

  29. Bagdasaryan, A. S., Karapetyan, G. Y., Mashinin, O. V., & Semenov, V. V. RF patent 2242838, dd. 20/12/04. SAW Filter. Published in bul. No.35 2004 (in Russian).

    Google Scholar 

  30. Bagdasaryan, A. S., Karapetyan, G. Y., Kondratiev, S. N., & Semenov V. V. (2002). RF patent 2195071, dd. 20/12/02. SAW band-stop filter. Published in bul. 35 (in Russian).

    Google Scholar 

  31. Cook, A. M., Farmer, J. O., & West, L. E. (1987). A new option in subscriber control. Communications Engineering and Design, 35–49.

    Google Scholar 

  32. Karapetyan, G. Y., Bagdasaryan, S. A., & Mashinin, O. V. (2003). Impedance SAW filters in master antenna television systems. In Proceedings of the conference “Actual problems of electronic instrument manufacture” (pp. 67–69), Saratov, (in Russian).

    Google Scholar 

  33. Mashinin, O., Bagdasaryan, A., Lvov, V., Praporschikov, V., Sinitsyna, T., & Bagdasaryan, S. (2008). Modular channel equalizers on SAW filters. Electronics: Science, Technology, Business, 2, 74–81 (in Russian).

    Google Scholar 

  34. Bagdasaryan, A. S., Sigov, A. S. RF Useful model patent No.120533 RUS, 20/09/2012. Head-end station. (in Russian).

    Google Scholar 

  35. Bagdasaryan, A. S., & Karapetyan, G. Y. (1998). Impedance SAW filters for satellite and high-definition television. Telecommunications, 6, 21–22 (in Russian).

    Google Scholar 

  36. Bagdasaryan, A. S., & Karapetyan, G. Y. (1998). Impedance SAW filters for satellite TV and HDTV. In Proceedings of the 43rd scientific session devoted to the day of Radio (p. 17) (in Russian).

    Google Scholar 

  37. Karapetyan, G. Y., & Bagdasaryan, S. A. (2003). Two-mesh impedance bridge SAW filters with increased reliability. In Proceedings of the conference “Actual problems of electronic instrument manufacture” (pp. 70–72). Saratov (in Russian).

    Google Scholar 

  38. Bagdasaryan, A. S., & Karapetyan, G. Y. (1999). Impedance SAW filters for cellular communication systems. In Systems and means of communication, television and broadcasting (1st ed., pp. 59–62) (in Russian).

    Google Scholar 

  39. Bagdasaryan, A. S., & Karapetyan, G. Y. (1998). Broadband impedance filter. In Systems and means of communication, television and radio broadcasting (1st ed., pp. 34–37) (in Russian).

    Google Scholar 

  40. Bagdasaryan, A. S., & Karapetyan, G. Y. (1999). The use of impedance SAW filters in broadband Fourier processors. In Systems and means of communication, television and broadcasting (1st ed., pp. 56–58) (in Russian).

    Google Scholar 

  41. Bagdasaryan, A. S., Mashinin, O. V., & Sinitsyna, T. V. (2004). Low loss SAW filters based on U-shaped coupler. Telecommunications, 2, 32–33 (in Russian).

    Google Scholar 

  42. Gulyaev, Y. V., Bagdasaryan, A. S., Sinitsyna, T. V., Mashinin, O. V., Praporschikov, V. V., Orlov, M. M., & Egorov, R. V. (2004). SAW filters in the input stages of transceiver devices. Science and Technology in Industry, 4 , 82–88 (in Russian).

    Google Scholar 

  43. Samoilovich, M. I., Belyanin, A. F., Zhitkovsky, V. D., & Bagdasaryan, A. S. (2004). Nanostructured carbon materials in thin-film technology. Engineering Physics, 1, 33 p. (in Russian).

    Google Scholar 

  44. Bagdasaryan, A., Bagdasaryan, S., Butenko, V., & Karapetyan, G. (2012). RFID tags based on SAW: Design and technology features. Scientific and Technical Journal “Electronics: NTB”, 7, 76–82 (in Russian).

    Google Scholar 

  45. Butenko, V. V., Bagdasaryan, A. S., Bagdasaryan, S. A., Karapetyan, G. Y., & Nikolaeva, S. O. (2013). Acousto-electronic ID tags in LTCC ceramics. Proceedings of the Research Institute of Radio, 1, 16–23 (in Russian).

    Google Scholar 

  46. Belyanin, A. F., Gulyaev, Y. V., Samoilovich, M. I., & Bagdasaryan, A. S. (2004). Equipment for the formation of diamond films and diamond-like materials for acoustoelectronics. Science and Technology in Industry, 4, 19 (in Russian).

    Google Scholar 

  47. Mayskaya, V. (2013). MEMS technology wins new frontiers. Scientific and Technical JournalElectronics: NTB”, 1, 186–188 (in Russian).

    Google Scholar 

  48. Tunable Impedance Matching Networks (TIM). www.wispry.com/products-TIM.php

  49. WiSpry envisions new types of tunable RF applications without frequency constraints for wireless handheld and infrastructure applications. www.businesswire.com/news/home/20140227005288/en/WiSpry-Envisions-Types-Tunable-RF-Applications-Frequency

  50. Moyer, B. A new variable capacitor. Cavendish kinetics targets antenna frequency tuning. www.eejournal.com/archives/articles/20130923-cavendish

  51. Tornatta P. A method to design an aperture-tuned antenna using a MEMS digital variable Capacitor. www.microwavejournal.com/articles/2128 3-a-method-to-design-an-aperture-tuned-antenna-using-a-mems-digital-variable-capacitor

  52. Zhang, S., Su, W., Zaghloul, М., & Thibeault, B. (2008). Wideband CMOS compatible capacitive MEMS switch for RF applications. IEEE Microwave and Wireless Components Letters, 18(9), 599–601.

    Article  Google Scholar 

  53. Fouladi, S., & Mansour, R. R. (2010). Capacitive RF MEMS switches fabricated in standard 0.35μm CMOS Technology. IEEE Transactions on Microwave Theory and Techniques, 58(2), 478–484.

    Article  Google Scholar 

  54. Fouladi, S., Domingue, F., Zahirovic, N., & Mansour, R. R. (2010). Distributed MEMS tunable impedance-matching network based on suspended slow-wave structure fabricated in a standard CMOS technology. IEEE Transactions on Microwave Theory and Techniques, 58(4), 1056–1064.

    Article  Google Scholar 

  55. Kaynak, М., Ehwald, K. E., Drews, J. et al. (2009). BEOL embedded RF-MEMS switch for mm-wave applications. In Proceedings of the IEEE International Electron Devices Meeting (IEDM) (pp. 1–4).

    Google Scholar 

  56. Reinke, J., Fedder, G. K., & Mukherjee, T. (2011). CMOS-MEMS 3-bit digital capacitors with tuning ratios greater than 60:1. IEEE Transactions on Microwave Theory and Techniques, 59, 1238–1248.

    Article  Google Scholar 

  57. Fouladi, S., & Mansour, R. R. (2009, October). Reconfigurable amplifier with tunable impedance matching networks based on CMOS-MEMS capacitors in 0.18μm CMOS technology. In Proceedings of the 2nd Microsystems Nanoelectronics Research Conference (pp. 33–34).

    Google Scholar 

  58. Fall, E. M., Domingue, F., Fouladi, S., & Mansour, R. R. (2011). Design of reconfigurable quad-band CMOS class AB power amplifier employing MEMS variable capacitors in 0.18μm technology. In Fourth International Conference on Advances in Circuits, Electronics and Micro-electronics (pp. 34–37).

    Google Scholar 

  59. Zahirovic, N., Mansour, R. R., & Yu, М. (2010). Piezoresistive position sensing for the detection of hysteresis and dielectric charging in CMOS-MEMS variable capacitors. IEEE Transactions on Microwave Theory and Techniques, 58, 3961–3970.

    Article  Google Scholar 

  60. Belov, L., & Zhitnikova, M. (2004). RF MEMS components. Scientific and Technical JournalElectronics: NTB”, 8, 18–25 (in Russian).

    Google Scholar 

  61. Chen, W., Fang, W., & Li, S. (2012). High-Q integrated CMOS- MEMS resonators with deep-submicrometer gaps and quasi-linear frequency tuning. Microelectromechanical Systems, 21(3), 688–701.

    Article  Google Scholar 

  62. Richards, R., & De Los Santos, G. MEMS devices for microwave applications: A new wave (trans. by A. Fedyanovich). http://www.gaw.ru; http://catalog.gaw.ru/index.php?page=document&id=976

  63. Prokimov, A., Lobanov, A., Dzhurinsky, K., & Kuznetsov, R. (2015). Phase stability of microwave cable assemblies with a PTFE dielectric. Komponenty i Tehnologiya, 6, 58–63 (in Russian).

    Google Scholar 

  64. Tumachek, A., & Kruglikov, D. (2014). Software-configurable radio is gaining momentum. Modern Electronics, 8, 66–71 (in Russian).

    Google Scholar 

  65. Bykhovskiy, M. A. (2014). The development of telecommunications. In On the way to the information society: The development of satellite telecommunications systems (p. 440). M. Hotline - Telecom (in Russian).

    Google Scholar 

  66. Qureshi, S. U. H. (1985). Adaptive equalization. In Proceedings of the IEEE (Vol. 73, No. 9, pp. 1349–1387), IEEE Press, New York.

    Article  Google Scholar 

  67. Johnson, P. (1985, Мау). New research lab leads to unique radio receiver. E-Systems Теаm, 5, 6–7.

    Google Scholar 

  68. 1ЕС 60966-1 ed.2.0 (1999). International standard. Radio frequency and coaxial cable assemblies - Part 1: Generic specification - General requirements and test methods.

    Google Scholar 

  69. IEC 60966–2-1 ed.3.0 (2008). International standard. Radio frequency and coaxial cable assemblies; Part 2–1: Sectional specification for flexible coaxial cable assemblies.

    Google Scholar 

  70. Gore cable assembly builder microwave assembly part number G5RO I RO 10 170. www.goremicrowave.com

  71. Development and manufacture of coaxial connectors, adapters and cable assemblies. www.spcable.ru, www.spetskabel.ru (in Russian).

  72. Micro-coax specification cable assemblies, UFA210B low loss 26,5 GHz, 2004.

    Google Scholar 

  73. GOST National Standard 11324.0-78. Radio frequency cables. General technical conditions (in Russian).

    Google Scholar 

  74. Dzhurinsky, K. B. (2014). Modern RF connectors and EMI filters (in Russian).

    Google Scholar 

  75. MPD Microwave Product Digest. Current innovations in phase stable coaxial cable design by Times Microwave System. www.timesmicrowave.com.

  76. Efimov, I. E., & Ostankovich, G. А. (1977). Radio-frequency transmission lines. RF cables (2nd ed.). M.: Communication (in Russian).

    Google Scholar 

  77. Prokimov, A., Dzhurinsky, K., & Kuznetsov, R. (2015). Microwave Cable Assemblies. Function, classification, application peculiarities. Komponenty i Tehnologiya, 5, 28–32 (in Russian).

    Google Scholar 

  78. Retnyuk, V. (2014). Solutions to cable assemblies of the microwave range. Komponenty i Tehnologiya, 7, 63–84 (in Russian).

    Google Scholar 

  79. Teflon® PFA resin and film. www2.dupont.com

  80. Fluoropolymer F-50. www.plastpolymer.org (in Russian).

  81. Test+Measurement. Edition 2013. www.hubersuhner.com

  82. Meggitt Safety Systems. SiO2 cable systems. www.stablecable.com

  83. Times Microwave Systems. SiO2 coaxial cable assemblies. www.timesmicrowave.com

  84. Measure Tech Inc. Silicon dioxide cable assembly. www.measure-tech.com

  85. Thermocoax. SiO2 insulated signal transmission cables. www.thermocoax.com

  86. Karstensen, H., Koufogiannis, I., Sorolla, E., Kress, G., Mattes, M, Rupflin, M, Fuchs, J., & Wettstein, K. (2013, September 24–26). Phase stable RF cable for space applications. In Space Passive Component Days, 1st International Symposium (in Russian).

    Google Scholar 

  87. Efimov, I. E., & Ostankovich, G. A. (1977). RF transmission lines. RF cables (2nd ed., revised and updated). M.: Svyaz (in Russian).

    Google Scholar 

  88. Varava, N., Nikonorov, M., & Pronin, S. (2015). Active fiber-optic components for LAN and dedicated applications. Part 1. First Mile, 3, 84–91 (in Russian).

    Google Scholar 

  89. Varava, N., Nikonorov, M., & Pronin S. (2015). Active fiber-optic components for LAN and dedicated applications. Part 2. First Mile, 4, 56–61 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Belous, A., Saladukha, V. (2020). Basic Components of Telecommunication Systems. In: High-Speed Digital System Design. Springer, Cham. https://doi.org/10.1007/978-3-030-25409-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25409-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25408-7

  • Online ISBN: 978-3-030-25409-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics