Advertisement

Co-Infection with TB and HIV: Converging Epidemics, Clinical Challenges, and Microbial Synergy

Chapter

Abstract

Human immunodeficiency virus (HIV) and Mycobacterium tuberculosis (Mtb) are the two leading causes of infectious disease-related death today. An estimated 2.6 million people die as a result of infection with one or both of these pathogens annually, while a range of morbidities afflict tens of millions more. The resurgence of TB in the years following the start of the HIV/AIDS pandemic revealed a close relationship of these two infectious diseases. TB and HIV are now viewed as a syndemic that impedes efforts to reduce incidence of infection, complicates treatment, and promotes development of drug resistance. This chapter summarizes the complex factors whereby TB and HIV converge to drive a global health emergency and discusses ongoing research and clinical efforts to reduce dual disease.

Keywords

Tuberculosis HIV/AIDS TB and HIV co-infection Microbial synergy Pathogenesis Cellular immunity Immune dysfunction Innate immunity Clinical challenges Drug resistance 

References

  1. 1.
    Paulson T. Epidemiology: a mortal foe. Nature. 2013;502(7470):S2–3.PubMedCrossRefGoogle Scholar
  2. 2.
    Hershkovitz I, et al. Detection and molecular characterization of 9,000-year-old Mycobacterium tuberculosis from a Neolithic settlement in the Eastern Mediterranean. PLoS One. 2008;3(10):e3426.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Rom WN, Garay SM, editors. Tuberculosis. 1st ed. Boston: Little, Brown; 1996. xxv, 1002 p.Google Scholar
  4. 4.
    Brothwell DR, Sandison AT. Diseases in antiquity; a survey of the diseases, injuries, and surgery of early populations. Springfield, IL: C. C. Thomas; 1967. xix, 766 p.Google Scholar
  5. 5.
    Donoghue HD. Insights gained from palaeomicrobiology into ancient and modern tuberculosis. Clin Microbiol Infect. 2011;17(6):821–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Rothschild BM, et al. Mycobacterium tuberculosis complex DNA from an extinct bison dated 17,000 years before the present. Clin Infect Dis. 2001;33(3):305–11.PubMedCrossRefGoogle Scholar
  7. 7.
    Wirth T, et al. Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathog. 2008;4(9):e1000160.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Bos KI, et al. Pre-columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature. 2014;514(7523):494–7.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Formicola V, Milanesi Q, Scarsini C. Evidence of spinal tuberculosis at the beginning of the fourth millennium BC from Arene Candide cave (Liguria, Italy). Am J Phys Anthropol. 1987;72(1):1–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Zink A, et al. Molecular analysis of skeletal tuberculosis in an ancient Egyptian population. J Med Microbiol. 2001;50(4):355–66.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Morse D, Brothwell DR, Ucko PJ. Tuberculosis in ancient Egypt. Am Rev Respir Dis. 1964;90:524–41.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Faerman M, Jankauskas R. Paleopathological and molecular evidence of human bone tuberculosis in Iron Age Lithuania. Anthropol Anz. 2000;58(1):57–62.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Nicholas A, Boire VAAR, Parrish NM, Riedel S. Tuberculosis: from an untreatable disease in antiquity to an untreatable disease in modern times? J Anc Dis Prev Rem. 2013;1(2):1.Google Scholar
  14. 14.
    Verano JW, Ubelaker DH, National Museum of Natural History (U.S.). Disease and demography in the Americas. Washington, DC: Smithsonian Institution Press; 1992.. x, 294 p.Google Scholar
  15. 15.
    Allison MJ, Mendoza D, Pezzia A. Documentation of a case of tuberculosis in Pre-Columbian America. Am Rev Respir Dis. 1973;107(6):985–91.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Bloom BR. Tuberculosis: pathogenesis, protection, and control. Washignton, DC: ASM Press; 1994.CrossRefGoogle Scholar
  17. 17.
    Webb GB. Tuberculosis. New York: P. B. Hoeber, Inc; 1936. xv, 205 p.Google Scholar
  18. 18.
    Waksman SA. The conquest of tuberculosis. Berkeley: University of California Press; 1964. xiv, 241 p.Google Scholar
  19. 19.
    Porter JDH, Grange JM. Tuberculosis: an interdisciplinary perspective. London: Imperial College Press; 1999.CrossRefGoogle Scholar
  20. 20.
    Dubos RJ, Dubos J. The white plague; tuberculosis, man and society. 1st ed. Boston: Little; 1952. viii, 277 p.Google Scholar
  21. 21.
    Daniel TM. The history of tuberculosis. Respir Med. 2006;100(11):1862–70.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Krause AK. Tuberculosis and public health. Am Rev Tuberc. 1928;28(3):271–322.Google Scholar
  23. 23.
    Fairchild AL, Oppenheimer GM. Public health nihilism vs pragmatism: history, politics, and the control of tuberculosis. Am J Public Health. 1998;88(7):1105–17.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Newsholme A. Poverty and Disease, as illustrated by the Course of Typhus Fever and Phthisis in Ireland: (Presidential Address). Proc R Soc Med. 1908;1(Sect Epidemiol State Med):1–44.Google Scholar
  25. 25.
    Wilson LG. The historical decline of tuberculosis in Europe and America: its causes and significance. J Hist Med Allied Sci. 1990;45(3):366–96.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Jones DS, Podolsky SH, Greene JA. The burden of disease and the changing task of medicine. N Engl J Med. 2012;366(25):2333–8.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Warner DF, Mizrahi V. Complex genetics of drug resistance in Mycobacterium tuberculosis. Nat Genet. 2013;45(10):1107–8.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    World Health Organization. Global tuberculosis programme. Framework for effective tuberculosis control. Geneva, Switzerland. WHO/TB/94.179, 1994.Google Scholar
  29. 29.
    WHO. Global tuberculosis report. Geneva: World Health Organization; 2017.Google Scholar
  30. 30.
    Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med. 2011;1(1):a006841.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Vidal N, et al. Unprecedented degree of human immunodeficiency virus type 1 (HIV-1) group M genetic diversity in the Democratic Republic of Congo suggests that the HIV-1 pandemic originated in Central Africa. J Virol. 2000;74(22):10498–507.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Faria NR, et al. HIV epidemiology. The early spread and epidemic ignition of HIV-1 in human populations. Science. 2014;346(6205):56–61.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Gao F, et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature. 1999;397(6718):436–41.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Deeks SG, et al. HIV infection. Nat Rev Dis Primers. 2015;1:15035.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    CDC. Pneumocystis pneumonia—Los Angeles. In: MMWR. Morbidity and Mortality Weekly Report. Atlanta, GA: CDC; 1981. p. 1–3.Google Scholar
  36. 36.
    CDC. A cluster of Kaposi’s sarcoma and Pneumocystis carinii pneumonia among homosexual male residents of Los Angeles and range Counties, California. In: MMWR. Morbidity and Mortality Weekly Report. Atlanta, GA: CDC; 1982. p. 305–7.Google Scholar
  37. 37.
    CDC. Opportunistic infections and Kaposi’s sarcoma among Haitians in the United States. In: MMWR. Morbidity and Mortality Weekly Reports. Atlanta, GA: CDC; 1982. p. 353–4.Google Scholar
  38. 38.
    CDC. Epidemiologic notes and reports pneumocystis carinii pneumonia among persons with Hemophilia A. In: MMWR. Morbidity and Mortality Weekly Reports. Altanta, GA: CDC; 1982. p. 365–7.Google Scholar
  39. 39.
    CDC. Current trends update on acquired immune deficiency syndrome (AIDS)—United States. In: MMWR. Morbidity and Mortality Weekly Reports. Atlanta, GA: CDC; 1982. p. 513–4.Google Scholar
  40. 40.
    Popovic M, et al. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science. 1984;224(4648):497–500.PubMedCrossRefGoogle Scholar
  41. 41.
    WHO. The world health report 1999. Geneva: World Health Organization; 1999.Google Scholar
  42. 42.
    UNAIDS. Global report: UNAIDS report on the global AIDS epidemic 2013. Geneva: UNAIDS; 2013.Google Scholar
  43. 43.
    UNAIDS. UNAIDS Global AIDS update 2016. Geneva: UNAIDS; 2016.Google Scholar
  44. 44.
    Ai JW, et al. Updates on the risk factors for latent tuberculosis reactivation and their managements. Emerg Microbes Infect. 2016;5:e10.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Corbett EL, et al. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med. 2003;163(9):1009–21.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Laga M, Piot P. Prevention of sexual transmission of HIV: real results, science progressing, societies remaining behind. AIDS. 2012;26(10):1223–9.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Craig GM, et al. Tuberculosis stigma as a social determinant of health: a systematic mapping review of research in low incidence countries. Int J Infect Dis. 2017;56:90–100.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Rueda S, et al. Examining the associations between HIV-related stigma and health outcomes in people living with HIV/AIDS: a series of meta-analyses. BMJ Open. 2016;6(7):e011453.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Levy JA. HIV pathogenesis: 25 years of progress and persistent challenges. AIDS. 2009;23(2):147–60.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    World Health Organization. WHO treatment guidelines for drug resistant tuberculosis: World Health Organization; 2016.Google Scholar
  51. 51.
    World Health Organization. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV Infection. Recommendations for a public health approach: World Health Organization; 2016.Google Scholar
  52. 52.
    Gebremariam MK, Bjune GA, Frich JC. Barriers and facilitators of adherence to TB treatment in patients on concomitant TB and HIV treatment: a qualitative study. BMC Public Health. 2010;10:651.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Mesfin YM, et al. Association between HIV/AIDS and multi-drug resistance tuberculosis: a systematic review and meta-analysis. PLoS One. 2014;9(1):e82235.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Chung-Delgado K, et al. Mortality among MDR-TB cases: comparison with drug-susceptible tuberculosis and associated factors. PLoS One. 2015;10(3):e0119332.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    (UNAIDS), J.U.N.P.o.H.A. 90-90-90 An ambitious treatment target to help end the AIDS epidemic. 2014.Google Scholar
  56. 56.
    Cattamanchi A, et al. Interferon-gamma release assays for the diagnosis of latent tuberculosis infection in HIV-infected individuals: a systematic review and meta-analysis. J Acquir Immune Defic Syndr. 2011;56(3):230–8.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Cheallaigh CN, et al. Interferon gamma release assays for the diagnosis of latent TB infection in HIV-infected individuals in a low TB burden country. PLoS One. 2013;8(1):e53330.PubMedCrossRefGoogle Scholar
  58. 58.
    Mandalakas AM, et al. High level of discordant IGRA results in HIV-infected adults and children. Int J Tuberc Lung Dis. 2008;12(4):417–23.PubMedGoogle Scholar
  59. 59.
    Montales MT, et al. HIV-associated TB syndemic: a growing clinical challenge worldwide. Front Public Health. 2015;3:281.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kerkhoff AD, et al. Disseminated tuberculosis among hospitalised HIV patients in South Africa: a common condition that can be rapidly diagnosed using urine-based assays. Sci Rep. 2017;7(1):10931.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    LaCourse SM, et al. Urine TB lipoarabinomannan (LAM) predicts mortality in hospitalized HIV-infected children. Clin Infect Dis. 2018;66:1798.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kaur R, et al. Diagnostic accuracy of xpert test in tuberculosis detection: a systematic review and meta-analysis. J Glob Infect Dis. 2016;8(1):32–40.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Thit SS, et al. The clinical utility of the urine-based lateral flow lipoarabinomannan assay in HIV-infected adults in Myanmar: an observational study. BMC Med. 2017;15(1):145.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Li S, et al. Diagnostic accuracy of Xpert MTB/RIF for tuberculosis detection in different regions with different endemic burden: a systematic review and meta-analysis. PLoS One. 2017;12(7):e0180725.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    World Health Organization. The end TB strategy: global strategy and targets for tuberculosis prevention, care and control after 2015: World Health Organization; 2015.Google Scholar
  66. 66.
    WHO. 2015 global tuberculosis report. Geneva: World Health Organization; 2015.Google Scholar
  67. 67.
    Lai RP, Meintjes G, Wilkinson RJ. HIV-1 tuberculosis-associated immune reconstitution inflammatory syndrome. Semin Immunopathol. 2016;38(2):185–98.PubMedCrossRefGoogle Scholar
  68. 68.
    Manabe YC, et al. Immune reconstitution inflammatory syndrome: risk factors and treatment implications. J Acquir Immune Defic Syndr. 2007;46(4):456–62.PubMedCrossRefGoogle Scholar
  69. 69.
    Marais S, et al. Management of patients with the immune reconstitution inflammatory syndrome. Curr HIV/AIDS Rep. 2009;6(3):162–71.PubMedCrossRefGoogle Scholar
  70. 70.
    Bahr N, et al. Central nervous system immune reconstitution inflammatory syndrome. Curr Infect Dis Rep. 2013;15(6):583–93.PubMedCrossRefGoogle Scholar
  71. 71.
    Johnson T, Nath A. Neurological complications of immune reconstitution in HIV-infected populations. Ann N Y Acad Sci. 2010;1184:106–20.PubMedCrossRefGoogle Scholar
  72. 72.
    Nath A, Berger JR. Complications of immunosuppressive/immunomodulatory therapy in neurological diseases. Curr Treat Options Neurol. 2012;14(3):241–55.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Mahnke YD, et al. Selective expansion of polyfunctional pathogen-specific CD4(+) T cells in HIV-1-infected patients with immune reconstitution inflammatory syndrome. Blood. 2012;119(13):3105–12.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Blanc FX, et al. Earlier versus later start of antiretroviral therapy in HIV-infected adults with tuberculosis. N Engl J Med. 2011;365(16):1471–81.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Meintjes G, et al. Corticosteroid-modulated immune activation in the tuberculosis immune reconstitution inflammatory syndrome. Am J Respir Crit Care Med. 2012;186(4):369–77.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Moreno S, et al. Risk for developing tuberculosis among anergic patients infected with HIV. Ann Intern Med. 1993;119(3):194–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Zilly W, Breimer DD, Richter E. Pharmacokinetic interactions with rifampicin. Clin Pharmacokinet. 1977;2(1):61–70.PubMedCrossRefGoogle Scholar
  78. 78.
    Sterling TR. Treatment of pulmonary tuberculosis in HIV-infected adults. In UpToDate. Reyn CFv, Baron EL, editors. 2016.Google Scholar
  79. 79.
    Erratum: New Guidelines for the Treatment of Drug-Susceptible Tuberculosis from the American Thoracic Society, Centers for Disease Control and Prevention, and the Infectious Diseases Society of America: Now Comes the Hard Part. Am J Respir Crit Care Med. 2017;195(11):1540.Google Scholar
  80. 80.
    Nahid P, et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: treatment of Drug-Susceptible Tuberculosis. Clin Infect Dis. 2016;63(7):e147–95.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Abdool Karim SS, et al. Timing of initiation of antiretroviral drugs during tuberculosis therapy. N Engl J Med. 2010;362(8):697–706.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Velasco M, et al. Effect of simultaneous use of highly active antiretroviral therapy on survival of HIV patients with tuberculosis. J Acquir Immune Defic Syndr. 2009;50(2):148–52.PubMedCrossRefGoogle Scholar
  83. 83.
    Havlir DV, et al. Timing of antiretroviral therapy for HIV-1 infection and tuberculosis. N Engl J Med. 2011;365(16):1482–91.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Naidoo K, et al. The immune reconstitution inflammatory syndrome after antiretroviral therapy initiation in patients with tuberculosis: findings from the SAPiT trial. Ann Intern Med. 2012;157(5):313–24.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Bartlett JG, Sax PE. Selecting antiretroviral regimens for the treatment-naïve HIV-infected patient. In UpToDate. Hirsch MS, Mitty J, editors. 2016.Google Scholar
  86. 86.
    Dooley KE, Chaisson RE. Tuberculosis and diabetes mellitus: convergence of two epidemics. Lancet Infect Dis. 2009;9(12):737–46.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Kroesen VM, et al. Non-steroidal anti-inflammatory drugs as host-directed therapy for tuberculosis: a systematic review. Front Immunol. 2017;8:772.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Zumla A, et al. Towards host-directed therapies for tuberculosis. Nat Rev Drug Discov. 2015;14(8):511–2.PubMedCrossRefGoogle Scholar
  89. 89.
    Getahun H, et al. HIV infection-associated tuberculosis: the epidemiology and the response. Clin Infect Dis. 2010;50(Suppl 3):S201–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Mudzengi D, et al. The patient costs of care for those with TB and HIV: a cross-sectional study from South Africa. Health Policy Plan. 2017;32:iv48.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    World Health Organization. WHO policy on collaborative TB/HIV activities. Guidelines for national programmes and other stakeholders: World Health Organization; 2012.Google Scholar
  92. 92.
    Gilbert JA, et al. Integrating community-based interventions to reverse the convergent TB/HIV epidemics in rural South Africa. PLoS One. 2015;10(5):e0126267.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Owiti P, et al. Integrating tuberculosis and HIV services in rural Kenya: uptake and outcomes. Public Health Action. 2015;5(1):36–44.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Tornheim JA, Dooley KE. Tuberculosis associated with HIV infection. Microbiol Spectr. 2017;5(1).  https://doi.org/10.1128/microbiolspec.TNMI7-0028-2016.
  95. 95.
    Torrelles JB, Schlesinger LS. Integrating lung physiology, immunology, and tuberculosis. Trends Microbiol. 2017;25(8):688–97.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Philips JA, Ernst JD. Tuberculosis pathogenesis and immunity. Annu Rev Pathol. 2012;7:353–84.PubMedCrossRefGoogle Scholar
  97. 97.
    Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol. 2017;14:963.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Queval CJ, Brosch R, Simeone R. The macrophage: a disputed fortress in the battle against Mycobacterium tuberculosis. Front Microbiol. 2017;8:2284.Google Scholar
  99. 99.
    Jagannath C, et al. Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat Med. 2009;15(3):267–76.PubMedCrossRefGoogle Scholar
  100. 100.
    Castillo EF, et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc Natl Acad Sci U S A. 2012;109(46):E3168–76.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Awuh JA, Flo TH. Molecular basis of mycobacterial survival in macrophages. Cell Mol Life Sci. 2017;74(9):1625–48.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Dutta NK, Karakousis PC. Latent tuberculosis infection: myths, models, and molecular mechanisms. Microbiol Mol Biol Rev. 2014;78(3):343–71.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Orme IM, Robinson RT, Cooper AM. The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol. 2015;16(1):57–63.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    McClean CM, Tobin DM. Macrophage form, function, and phenotype in mycobacterial infection: lessons from tuberculosis and other diseases. Pathog Dis. 2016;74(7):ftw068.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Tobin DM, et al. An enzyme that inactivates the inflammatory mediator leukotriene b4 restricts mycobacterial infection. PLoS One. 2013;8(7):e67828.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Mayer-Barber KD, et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature. 2014;511(7507):99–103.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Berry MP, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature. 2010;466(7309):973–7.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Donovan ML, et al. Type I interferons in the pathogenesis of tuberculosis: molecular drivers and immunological consequences. Front Immunol. 2017;8:1633.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Zhang G, et al. A proline deletion in IFNAR1 impairs IFN-signaling and underlies increased resistance to tuberculosis in humans. Nat Commun. 2018;9(1):85.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Hall NB, et al. Polymorphisms in TICAM2 and IL1B are associated with TB. Genes Immun. 2015;16(2):127–33.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Sia JK, Georgieva M, Rengarajan J. Innate immune defenses in human tuberculosis: an overview of the interactions between mycobacterium tuberculosis and innate immune cells. J Immunol Res. 2015;2015:747543.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Warren E, Teskey G, Venketaraman V. Effector mechanisms of neutrophils within the innate immune system in response to Mycobacterium tuberculosis infection. J Clin Med. 2017;6(2):E15.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Mishra BB, et al. Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis. Nat Microbiol. 2017;2:17072.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Dallenga T, Schaible UE. Neutrophils in tuberculosis—first line of defence or booster of disease and targets for host-directed therapy? Pathog Dis. 2016;74(3):ftw012.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Ong CW, et al. Complex regulation of neutrophil-derived MMP-9 secretion in central nervous system tuberculosis. J Neuroinflammation. 2017;14(1):31.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Esin S, Batoni G. Natural killer cells: a coherent model for their functional role in Mycobacterium tuberculosis infection. J Innate Immun. 2015;7(1):11–24.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Vankayalapati R, et al. Role of NK cell-activating receptors and their ligands in the lysis of mononuclear phagocytes infected with an intracellular bacterium. J Immunol. 2005;175(7):4611–7.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Vankayalapati R, et al. The NKp46 receptor contributes to NK cell lysis of mononuclear phagocytes infected with an intracellular bacterium. J Immunol. 2002;168(7):3451–7.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Hanson DA, et al. Biosynthesis of granulysin, a novel cytolytic molecule. Mol Immunol. 1999;36(7):413–22.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Houchins JP, et al. Genomic structure of NKG5, a human NK and T cell-specific activation gene. Immunogenetics. 1993;37(2):102–7.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Stenger S, et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science. 1998;282(5386):121–5.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Chandra S, Kronenberg M. Activation and Function of iNKT and MAIT Cells. Adv Immunol. 2015;127:145–201.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Arora P, Foster EL, Porcelli SA. CD1d and natural killer T cells in immunity to Mycobacterium tuberculosis. Adv Exp Med Biol. 2013;783:199–223.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Jiang J, et al. Mucosal-associated invariant T cells from patients with tuberculosis exhibit impaired immune response. J Infect. 2016;72(3):338–52.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Jiang J, et al. Mucosal-associated invariant T-cell function is modulated by programmed death-1 signaling in patients with active tuberculosis. Am J Respir Crit Care Med. 2014;190(3):329–39.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Huang L, Russell DG. Protective immunity against tuberculosis: what does it look like and how do we find it? Curr Opin Immunol. 2017;48:44–50.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Schaible UE, et al. Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J Immunol. 1998;160(3):1290–6.Google Scholar
  128. 128.
    Herbst S, Schaible UE, Schneider BE. Interferon gamma activated macrophages kill mycobacteria by nitric oxide induced apoptosis. PLoS One. 2011;6(5):e19105.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Bustamante J, et al. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-gamma immunity. Semin Immunol. 2014;26(6):454–70.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Cooper AM, et al. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med. 1993;178(6):2243–7.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Pawlowski A, et al. Tuberculosis and HIV co-infection. PLoS Pathog. 2012;8(2):e1002464.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Shankar EM, et al. HIV-Mycobacterium tuberculosis co-infection: a ‘danger-couple model’ of disease pathogenesis. Pathog Dis. 2014;70(2):110–8.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Shen H, Chen ZW. The crucial roles of Th17-related cytokines/signal pathways in M. tuberculosis infection. Cell Mol Immunol. 2018;15(3):216–25.CrossRefGoogle Scholar
  134. 134.
    Flynn JL, et al. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc Natl Acad Sci U S A. 1992;89(24):12013–7.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Villarreal-Ramos B, et al. Investigation of the role of CD8+ T cells in bovine tuberculosis in vivo. Infect Immun. 2003;71(8):4297–303.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Chen CY, et al. A critical role for CD8 T cells in a nonhuman primate model of tuberculosis. PLoS Pathog. 2009;5(4):e1000392.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Prezzemolo T, et al. Functional signatures of human CD4 and CD8 T cell responses to Mycobacterium tuberculosis. Front Immunol. 2014;5:180.Google Scholar
  138. 138.
    Walch M, et al. Cytotoxic cells kill intracellular bacteria through granulysin-mediated delivery of granzymes. Cell. 2014;157(6):1309–23.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Canaday DH, et al. CD4(+) and CD8(+) T cells kill intracellular Mycobacterium tuberculosis by a perforin and Fas/Fas ligand-independent mechanism. J Immunol. 2001;167(5):2734–42.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Cooper AM, et al. The course of Mycobacterium tuberculosis infection in the lungs of mice lacking expression of either perforin- or granzyme-mediated cytolytic mechanisms. Infect Immun. 1997;65(4):1317–20.Google Scholar
  141. 141.
    Endsley JJ, et al. Characterization of bovine homologues of granulysin and NK-lysin. J Immunol. 2004;173(4):2607–14.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Endsley JJ, et al. Mycobacterium bovis BCG vaccination induces memory CD4+ T cells characterized by effector biomarker expression and anti-mycobacterial activity. Vaccine. 2007;25(50):8384–94.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Glatman-Freedman A, Casadevall A. Serum therapy for tuberculosis revisited: reappraisal of the role of antibody-mediated immunity against Mycobacterium tuberculosis. Clin Microbiol Rev. 1998;11(3):514–32.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Maglione PJ, Xu J, Chan J. B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis. J Immunol. 2007;178(11):7222–34.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Vordermeier HM, et al. Increase of tuberculous infection in the organs of B cell-deficient mice. Clin Exp Immunol. 1996;106(2):312–6.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Phuah JY, et al. Activated B cells in the granulomas of nonhuman primates infected with Mycobacterium tuberculosis. Am J Pathol. 2012;181(2):508–14.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Kaushal D, et al. Mucosal vaccination with attenuated Mycobacterium tuberculosis induces strong central memory responses and protects against tuberculosis. Nat Commun. 2015;6:8533.Google Scholar
  148. 148.
    Tsai MC, et al. Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell Microbiol. 2006;8(2):218–32.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Lu LL, et al. A functional role for antibodies in tuberculosis. Cell. 2016;167(2):433–43.. e14PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Li H, et al. Latently and uninfected healthcare workers exposed to TB make protective antibodies against Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2017;114(19):5023–8.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Narasimhan P, et al. Risk factors for tuberculosis. Pulm Med. 2013;2013:828939.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    WHO. W.H.O., HIV/AIDS fact sheet: WHO; 2016.Google Scholar
  153. 153.
    Hileman CO, Funderburg NT. Inflammation, immune activation, and antiretroviral therapy in HIV. Curr HIV/AIDS Rep. 2017;14(3):93–100.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Sheppard HW, Ascher MS. The natural history and pathogenesis of HIV infection. Annu Rev Microbiol. 1992;46:533–64.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Naif HM. Pathogenesis of HIV infection. Infect Dis Rep. 2013;5(Suppl 1):e6.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Abbas W, et al. Eradication of HIV-1 from the macrophage reservoir: an uncertain goal? Viruses. 2015;7(4):1578–98.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Schott K, Riess M, Konig R. Role of innate genes in HIV replication. Curr Top Microbiol Immunol. 2018;419:69.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Bosinger SE, Utay NS. Type I interferon: understanding its role in HIV pathogenesis and therapy. Curr HIV/AIDS Rep. 2015;12(1):41–53.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Bosinger SE, et al. Gene expression profiling of host response in models of acute HIV infection. J Immunol. 2004;173(11):6858–63.PubMedCrossRefGoogle Scholar
  160. 160.
    Sandstrom TS, Ranganath N, Angel JB. Impairment of the type I interferon response by HIV-1: potential targets for HIV eradication. Cytokine Growth Factor Rev. 2017;37:1–16.PubMedCrossRefGoogle Scholar
  161. 161.
    Neil SJ, Zang T, Bieniasz PD. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature. 2008;451(7177):425–30.PubMedCrossRefGoogle Scholar
  162. 162.
    Mandell MA, et al. TRIM proteins regulate autophagy: TRIM5 is a selective autophagy receptor mediating HIV-1 restriction. Autophagy. 2014;10(12):2387–8.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Sagnier S, et al. Autophagy restricts HIV-1 infection by selectively degrading Tat in CD4+ T lymphocytes. J Virol. 2015;89(1):615–25.PubMedCrossRefGoogle Scholar
  164. 164.
    Espert L, et al. Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J Clin Invest. 2006;116(8):2161–72.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Kyei GB, et al. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol. 2009;186(2):255–68.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Kulkarni PS, Butera ST, Duerr AC. Resistance to HIV-1 infection: lessons learned from studies of highly exposed persistently seronegative (HEPS) individuals. AIDS Rev. 2003;5(2):87–103.PubMedPubMedCentralGoogle Scholar
  167. 167.
    Alsahafi N, et al. Impaired downregulation of NKG2D ligands by Nef proteins from elite controllers sensitizes HIV-1-infected cells to antibody-dependent cellular cytotoxicity. J Virol. 2017;91(16):e00109.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Madhavi V, et al. HIV-1 Env- and Vpu-specific antibody-dependent cellular cytotoxicity responses associated with elite control of HIV. J Virol. 2017;91(18):e00700.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Ansari AW, et al. Natural killer cell heterogeneity: cellular dysfunction and significance in HIV-1 immuno-pathogenesis. Cell Mol Life Sci. 2015;72(16):3037–49.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Matusali G, et al. Soluble ligands for the NKG2D receptor are released during HIV-1 infection and impair NKG2D expression and cytotoxicity of NK cells. FASEB J. 2013;27(6):2440–50.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Saeidi A, et al. Functional role of mucosal-associated invariant T cells in HIV infection. J Leukoc Biol. 2016;100(2):305–14.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Cosgrove C, et al. Early and nonreversible decrease of CD161++ /MAIT cells in HIV infection. Blood. 2013;121(6):951–61.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Bonecini-Almeida Mda G, et al. Functional activity of alveolar and peripheral cells in patients with human acquired immunodeficiency syndrome and pulmonary tuberculosis. Cell Immunol. 1998;190(2):112–20.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Hayes PJ, et al. Alterations in blood leucocyte adhesion molecule profiles in HIV-1 infection. Clin Exp Immunol. 1999;117(2):331–4.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Bowers NL, et al. Immune suppression by neutrophils in HIV-1 infection: role of PD-L1/PD-1 pathway. PLoS Pathog. 2014;10(3):e1003993.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Bonsignori M, et al. Antibody-virus co-evolution in HIV infection: paths for HIV vaccine development. Immunol Rev. 2017;275(1):145–60.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Ruffin N, Hani L, Seddiki N. From dendritic cells to B cells dysfunctions during HIV-1 infection: T follicular helper cells at the crossroads. Immunology. 2017;151(2):137–45.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Christensen-Quick A, et al. Human Th17 cells lack HIV-inhibitory RNases and are highly permissive to productive HIV infection. J Virol. 2016;90(17):7833–47.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Prendergast A, et al. HIV-1 infection is characterized by profound depletion of CD161+ Th17 cells and gradual decline in regulatory T cells. AIDS. 2010;24(4):491–502.PubMedCrossRefGoogle Scholar
  180. 180.
    El Hed A, et al. Susceptibility of human Th17 cells to human immunodeficiency virus and their perturbation during infection. J Infect Dis. 2010;201(6):843–54.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Valverde-Villegas JM, et al. New insights about Treg and Th17 cells in HIV infection and disease progression. J Immunol Res. 2015;2015:647916.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Munier CM, et al. The role of T cell immunity in HIV-1 infection. Curr Opin Virol. 2013;3(4):438–46.PubMedCrossRefGoogle Scholar
  183. 183.
    Fellay J, et al. A whole-genome association study of major determinants for host control of HIV-1. Science. 2007;317(5840):944–7.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    International, H.I.V.C.S, et al. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science. 2010;330(6010):1551–7.CrossRefGoogle Scholar
  185. 185.
    Selwyn PA, et al. A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection. N Engl J Med. 1989;320(9):545–50.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Collins KR, et al. Impact of tuberculosis on HIV-1 replication, diversity, and disease progression. AIDS Rev. 2002;4(3):165–76.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Whalen C, et al. Accelerated course of human immunodeficiency virus infection after tuberculosis. Am J Respir Crit Care Med. 1995;151(1):129–35.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Meltzer MS, et al. Role of mononuclear phagocytes in the pathogenesis of human immunodeficiency virus infection. Annu Rev Immunol. 1990;8:169–94.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Brune KA, et al. HIV impairs lung epithelial integrity and enters the epithelium to promote chronic lung inflammation. PLoS One. 2016;11(3):e0149679.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Espert L, Beaumelle B, Vergne I. Autophagy in Mycobacterium tuberculosis and HIV infections. Front Cell Infect Microbiol. 2015;5:49.Google Scholar
  191. 191.
    Campbell GR, Spector SA. Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy. PLoS Pathog. 2012;8(5):e1002689.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Andersson AM, et al. Autophagy induction targeting mTORC1 enhances Mycobacterium tuberculosis replication in HIV co-infected human macrophages. Sci Rep. 2016;6:28171.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Duprez DA, et al. Inflammation, coagulation and cardiovascular disease in HIV-infected individuals. PLoS One. 2012;7(9):e44454.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Graziosi C, et al. Kinetics of cytokine expression during primary human immunodeficiency virus type 1 infection. Proc Natl Acad Sci U S A. 1996;93(9):4386–91.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Sinicco A, et al. Cytokine network and acute primary HIV-1 infection. AIDS. 1993;7(9):1167–72.PubMedCrossRefGoogle Scholar
  196. 196.
    Cooper AM, Torrado E. Protection versus pathology in tuberculosis: recent insights. Curr Opin Immunol. 2012;24(4):431–7.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Ernst JD. The immunological life cycle of tuberculosis. Nat Rev Immunol. 2012;12(8):581–91.PubMedCrossRefGoogle Scholar
  198. 198.
    Huynh KK, Joshi SA, Brown EJ. A delicate dance: host response to mycobacteria. Curr Opin Immunol. 2011;23(4):464–72.PubMedCrossRefGoogle Scholar
  199. 199.
    Juffermans NP, et al. Up-regulation of HIV coreceptors CXCR4 and CCR5 on CD4(+) T cells during human endotoxemia and after stimulation with (myco)bacterial antigens: the role of cytokines. Blood. 2000;96(8):2649–54.PubMedGoogle Scholar
  200. 200.
    Juffermans NP, et al. Patients with active tuberculosis have increased expression of HIV coreceptors CXCR4 and CCR5 on CD4(+) T cells. Clin Infect Dis. 2001;32(4):650–2.PubMedCrossRefGoogle Scholar
  201. 201.
    Briken V, et al. Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol Microbiol. 2004;53(2):391–403.PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Kedzierska K, et al. The influence of cytokines, chemokines and their receptors on HIV-1 replication in monocytes and macrophages. Rev Med Virol. 2003;13(1):39–56.PubMedCrossRefGoogle Scholar
  203. 203.
    Hogg A, et al. Activation of NK cell granulysin by mycobacteria and IL-15 is differentially affected by HIV. Tuberculosis (Edinb). 2011;91(Suppl 1):S75–81.CrossRefGoogle Scholar
  204. 204.
    Judge CJ, et al. CD56bright NK IL-7Ralpha expression negatively associates with HCV level, and IL-7-induced NK function is impaired during HCV and HIV infections. J Leukoc Biol. 2017;102(1):171–84.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Guerra C, et al. Control of Mycobacterium tuberculosis growth by activated natural killer cells. Clin Exp Immunol. 2012;168(1):142–52.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Saeidi A, et al. Attrition of TCR Valpha7.2+ CD161++ MAIT cells in HIV-tuberculosis co-infection is associated with elevated levels of PD-1 expression. PLoS One. 2015;10(4):e0124659.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Pedrosa J, et al. Neutrophils play a protective nonphagocytic role in systemic Mycobacterium tuberculosis infection of mice. Infect Immun. 2000;68(2):577–83.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Keller C, et al. Genetically determined susceptibility to tuberculosis in mice causally involves accelerated and enhanced recruitment of granulocytes. Infect Immun. 2006;74(7):4295–309.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Kerkhoff AD, et al. Blood neutrophil counts in HIV-infected patients with pulmonary tuberculosis: association with sputum mycobacterial load. PLoS One. 2013;8(7):e67956.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Bezuidenhout J, et al. Pleural tuberculosis in patients with early HIV infection is associated with increased TNF-alpha expression and necrosis in granulomas. PLoS One. 2009;4(1):e4228.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    de Noronha AL, et al. Lung granulomas from Mycobacterium tuberculosis/HIV-1 co-infected patients display decreased in situ TNF production. Pathol Res Pract. 2008;204(3):155–61.Google Scholar
  212. 212.
    Plaza V, et al. Bronchoalveolar lavage cell analysis in patients with human immunodeficiency virus related diseases. Thorax. 1989;44(4):289–91.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Nusbaum RJ, et al. Pulmonary tuberculosis in humanized mice infected with HIV-1. Sci Rep. 2016;6:21522.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Vanham G, et al. Examining a paradox in the pathogenesis of human pulmonary tuberculosis: immune activation and suppression/anergy. Tuber Lung Dis. 1997;78(3-4):145–58.PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Massanella M, et al. CD4 T-cell hyperactivation and susceptibility to cell death determine poor CD4 T-cell recovery during suppressive HAART. AIDS. 2010;24(7):959–68.PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Geldmacher C, et al. Preferential infection and depletion of Mycobacterium tuberculosis-specific CD4 T cells after HIV-1 infection. J Exp Med. 2010;207(13):2869–81.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Zheng CF, et al. Late expression of granulysin by microbicidal CD4+ T cells requires PI3K- and STAT5-dependent expression of IL-2Rbeta that is defective in HIV-infected patients. J Immunol. 2008;180(11):7221–9.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Wijesundara DK, et al. Emerging targets for developing T cell-mediated vaccines for human immunodeficiency virus (HIV)-1. Front Microbiol. 2017;8:2091.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Ongaya A, et al. Mycobacterium tuberculosis-specific CD8+ T cell recall in convalescing TB subjects with HIV co-infection. Tuberculosis (Edinb). 2013;93(Suppl):S60–5.CrossRefGoogle Scholar
  220. 220.
    Day CL, et al. Detection of polyfunctional Mycobacterium tuberculosis-specific T cells and association with viral load in HIV-1-infected persons. J Infect Dis. 2008;197(7):990–9.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Sirskyj D, et al. Disruption of the gamma c cytokine network in T cells during HIV infection. Cytokine. 2008;43(1):1–14.PubMedCrossRefPubMedCentralGoogle Scholar
  222. 222.
    Crotti A, et al. Naturally occurring C-terminally truncated STAT5 is a negative regulator of HIV-1 expression. Blood. 2007;109(12):5380–9.PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Hogg AE, et al. Induction of granulysin in CD8+ T cells by IL-21 and IL-15 is suppressed by human immunodeficiency virus-1. J Leukoc Biol. 2009;86(5):1191–203.PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Kaushal D, et al. The non-human primate model of tuberculosis. J Med Primatol. 2012;41(3):191–201.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Diedrich CR, O’Hern J, Wilkinson RJ. HIV-1 and the Mycobacterium tuberculosis granuloma: a systematic review and meta-analysis. Tuberculosis (Edinb). 2016;98:62–76.PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Foreman TW, et al. CD4+ T-cell-independent mechanisms suppress reactivation of latent tuberculosis in a macaque model of HIV coinfection. Proc Natl Acad Sci U S A. 2016;113(38):E5636–44.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Mwandumba HC, et al. Mycobacterium tuberculosis resides in nonacidified vacuoles in endocytically competent alveolar macrophages from patients with tuberculosis and HIV infection. J Immunol. 2004;172(7):4592–8.PubMedCrossRefPubMedCentralGoogle Scholar
  228. 228.
    Koppensteiner H, Brack-Werner R, Schindler M. Macrophages and their relevance in Human Immunodeficiency Virus Type I infection. Retrovirology. 2012;9:82.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Jambo KC, et al. Small alveolar macrophages are infected preferentially by HIV and exhibit impaired phagocytic function. Mucosal Immunol. 2014;7(5):1116–26.PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Mancino G, et al. Infection of human monocytes with Mycobacterium tuberculosis enhances human immunodeficiency virus type 1 replication and transmission to T cells. J Infect Dis. 1997;175(6):1531–5.PubMedCrossRefPubMedCentralGoogle Scholar
  231. 231.
    Rosas-Taraco AG, et al. Mycobacterium tuberculosis upregulates coreceptors CCR5 and CXCR4 while HIV modulates CD14 favoring concurrent infection. AIDS Res Hum Retrovir. 2006;22(1):45–51.PubMedCrossRefPubMedCentralGoogle Scholar
  232. 232.
    Hoshino Y, et al. Maximal HIV-1 replication in alveolar macrophages during tuberculosis requires both lymphocyte contact and cytokines. J Exp Med. 2002;195(4):495–505.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Nakata K, et al. Mycobacterium tuberculosis enhances human immunodeficiency virus-1 replication in the lung. Am J Respir Crit Care Med. 1997;155(3):996–1003.PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Pathak S, Wentzel-Larsen T, Asjo B. Effects of in vitro HIV-1 infection on mycobacterial growth in peripheral blood monocyte-derived macrophages. Infect Immun. 2010;78(9):4022–32.PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Hossain MM, Norazmi MN. Pattern recognition receptors and cytokines in Mycobacterium tuberculosis infection—the double-edged sword? Biomed Res Int. 2013;2013:179174.CrossRefGoogle Scholar
  236. 236.
    Pahari S, et al. Reinforcing the functionality of mononuclear phagocyte system to control tuberculosis. Front Immunol. 2018;9:193.PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Rodrigues V, et al. Myeloid cell interaction with HIV: a complex relationship. Front Immunol. 2017;8:1698.PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Carow B, et al. Silencing suppressor of cytokine signaling-1 (SOCS1) in macrophages improves Mycobacterium tuberculosis control in an interferon-gamma (IFN-gamma)-dependent manner. J Biol Chem. 2011;286(30):26873–87.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Ryo A, et al. SOCS1 is an inducible host factor during HIV-1 infection and regulates the intracellular trafficking and stability of HIV-1 Gag. Proc Natl Acad Sci U S A. 2008;105(1):294–9.PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Lowe DM, et al. Neutrophils in tuberculosis: friend or foe? Trends Immunol. 2012;33(1):14–25.PubMedCrossRefPubMedCentralGoogle Scholar
  241. 241.
    Yaseen MM, et al. The role of polymorphonuclear neutrophils during HIV-1 infection. Arch Virol. 2018;163(1):1–21.PubMedCrossRefPubMedCentralGoogle Scholar
  242. 242.
    Eruslanov EB, et al. Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect Immun. 2005;73(3):1744–53.PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Dallenga T, et al. M. tuberculosis-induced necrosis of infected neutrophils promotes bacterial growth following phagocytosis by macrophages. Cell Host Microbe. 2017;22(4):519–30. e3.PubMedCrossRefPubMedCentralGoogle Scholar
  244. 244.
    Allen M, et al. Mechanisms of control of Mycobacterium tuberculosis by NK cells: role of glutathione. Front Immunol. 2015;6:508.Google Scholar
  245. 245.
    Lu CC, et al. NK cells kill mycobacteria directly by releasing perforin and granulysin. J Leukoc Biol. 2014;96(6):1119–29.PubMedCrossRefPubMedCentralGoogle Scholar
  246. 246.
    Domingo-Gonzalez R, et al. Cytokines and chemokines in Mycobacterium tuberculosis infection. Microbiol Spectr. 2016;4(5).  https://doi.org/10.1128/microbiolspec.TBTB2-0018-2016.
  247. 247.
    Scully E, Alter G. NK cells in HIV disease. Curr HIV/AIDS Rep. 2016;13(2):85–94.PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Azzoni L, et al. Sustained impairment of IFN-gamma secretion in suppressed HIV-infected patients despite mature NK cell recovery: evidence for a defective reconstitution of innate immunity. J Immunol. 2002;168(11):5764–70.PubMedCrossRefPubMedCentralGoogle Scholar
  249. 249.
    Alter G, et al. Sequential deregulation of NK cell subset distribution and function starting in acute HIV-1 infection. Blood. 2005;106(10):3366–9.PubMedCrossRefPubMedCentralGoogle Scholar
  250. 250.
    Gold MC, Napier RJ, Lewinsohn DM. MR1-restricted mucosal associated invariant T (MAIT) cells in the immune response to Mycobacterium tuberculosis. Immunol Rev. 2015;264(1):154–66.PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Jiang J, et al. Enhanced immune response of MAIT cells in tuberculous pleural effusions depends on cytokine signaling. Sci Rep. 2016;6:32320.PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Jasenosky LD, et al. T cells and adaptive immunity to Mycobacterium tuberculosis in humans. Immunol Rev. 2015;264(1):74–87.PubMedCrossRefPubMedCentralGoogle Scholar
  253. 253.
    White L, et al. Differential effects of IL-21 and IL-15 on perforin expression, lysosomal degranulation, and proliferation in CD8 T cells of patients with human immunodeficiency virus-1 (HIV). Blood. 2007;109(9):3873–80.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyUniversity of Texas Medical Branch at GalvestonGalvestonUSA
  2. 2.University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations