Skip to main content

Interactions of Mycobacterium tuberculosis with Human Mesenchymal Stem Cells

  • Chapter
  • First Online:
Tuberculosis Host-Pathogen Interactions

Abstract

Tuberculosis is a leading cause of death due to infections in mankind. The causative pathogen Mycobacterium tuberculosis (Mtb) infects macrophages but also many other mammalian cells including hematopoietic and mesenchymal stem cells (MSCs). MSCs are multipotent and can differentiate into multiple cell phenotypes including macrophage like cells that express scavenger receptor-A (SR-A), mannose receptor, TLR-2/4 and contain NOD1/2 receptors in the cytosol. They express very low levels of HLA-DR (MHC-II) and HLA-ABC (MHC-I) because of which, they can be transplanted without adverse reactions. MSCs have self-renewal and regenerative properties, and secrete cytokines and chemokines; growth factors to reduce inflammation, repair and remodel tissues and maintain homeostasis. Thus, they have been used to treat human diseases including tuberculosis. Mtb infects MSCs from both humans and mice and persists within them for prolonged periods. We illustrate here that naïve MSCs interact with Mtb by phagocytosing them through SR-A, and killing them through intrinsic autophagy and nitric oxide. Persisting organisms then become dormant, and thus MSCs provide a niche for latent tuberculosis. Naive MSCs usually exert immunosuppressive properties on macrophages, T cells and DCs although they can be immune-enhancing depending on environmental milieu, and prior activation with cytokines like IFN-γ. Therefore, MSCs can play a dual role during the pathogenesis of tuberculosis. First, MSCs internalize Mtb either during primary aerosol infection or during progressive disease and migrate to bone marrow, where, they provide a niche, and secrete cytokines to dampen immune cell function. Secondly, they can kill replicating Mtb through autophagy and NO but seem to require additional activation or drugs for complete elimination of dormant Mtb. Since MSCs can be grown in vitro into large numbers for transplantation, and can be either pharmacologically or genetically modified, we discuss emerging stem cell based immunotherapeutic strategies for tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AM:

Alveolar macrophages

Bcl-2:

B cell lymphoma proteins

EGF:

Epithelial growth factor

FGF-2:

Fibroblast growth factor

HGF:

Hepatocyte growth factor

HLA-DR:

Human Leukocyte Antigen–D Related

HSCs:

Hematopoietic stem cells

IDO:

Indoleamine 2,3-Dioxygenase (IDO)

IGF-1:

Insulin-like growth factor-1

LTBI:

Latent tuberculosis Infection

M1, M2:

Macrophage phenotypes

MDR:

Multi drug resistant

MHC:

Major histocompatibility complex

MNGC:

Multinucleate giant cells

MSCs:

Mesenchymal stem cells

Mtb:

Mycobacterium tuberculosis

NO:

Nitric oxide

NOD-1/2:

Nuclear oligomerization domain

PGE-2:

Prostaglandin E2

ROS:

Reactive oxygen species

SR-A:

Scavenger receptor-A

TGF-α/β:

Transforming growth factor-α/β

TLR:

Toll-like receptor

VEGF:

Vascular endothelial growth factor

References

  1. Zumla A, et al. Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infect Dis. 2016;16(4):e47–63.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Baek SH, Li AH, Sassetti CM. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol. 2011;9(5):e1001065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gengenbacher M, Kaufmann SH. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev. 2012;36(3):514–32.

    Article  CAS  PubMed  Google Scholar 

  4. Gomez JE, McKinney JD. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis (Edinb). 2004;84(1–2):29–44.

    Article  Google Scholar 

  5. Wakamoto Y, et al. Dynamic persistence of antibiotic-stressed mycobacteria. Science. 2013;339(6115):91–5.

    Article  CAS  PubMed  Google Scholar 

  6. Frieden TR, et al. Tuberculosis. Lancet. 2003;362(9387):887–99.

    Article  PubMed  Google Scholar 

  7. Smith I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev. 2003;16(3):463–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van Crevel R, Ottenhoff TH, van der Meer JW. Innate immunity to Mycobacterium tuberculosis. Clin Microbiol Rev. 2002;15(2):294–309.

    Google Scholar 

  9. Saunders BM, Cooper AM. Restraining mycobacteria: role of granulomas in mycobacterial infections. Immunol Cell Biol. 2000;78(4):334–41.

    Article  CAS  PubMed  Google Scholar 

  10. Shaler CR, et al. Pulmonary mycobacterial granuloma increased IL-10 production contributes to establishing a symbiotic host-microbe microenvironment. Am J Pathol. 2011;178(4):1622–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Silva Miranda M, et al. The tuberculous granuloma: an unsuccessful host defence mechanism providing a safety shelter for the bacteria? Clin Dev Immunol. 2012;2012:139127.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Flynn JL, et al. Immunology studies in non-human primate models of tuberculosis. Immunol Rev. 2015;264(1):60–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bold TD, Ernst JD. Who benefits from granulomas, mycobacteria or host? Cell. 2009;136(1):17–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Russell DG, et al. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol. 2009;10(9):943–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol. 2012;12(5):352–66.

    Article  CAS  PubMed  Google Scholar 

  16. Raghuvanshi S, et al. Mycobacterium tuberculosis evades host immunity by recruiting mesenchymal stem cells. Proc Natl Acad Sci U S A. 2010;107(50):21653–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Das B, et al. CD271(+) bone marrow mesenchymal stem cells may provide a niche for dormant Mycobacterium tuberculosis. Sci Transl Med. 2013;5(170):170ra13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Tornack J, et al. Human and mouse hematopoietic stem cells are a depot for dormant Mycobacterium tuberculosis. PLoS One. 2017;12(1):e0169119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lee JH, et al. Anatomically and functionally distinct lung Mesenchymal populations marked by Lgr5 and Lgr6. Cell. 2017;170(6):1149–1163.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  21. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726–36.

    Article  CAS  PubMed  Google Scholar 

  22. Ma S, et al. Immunobiology of mesenchymal stem cells. Cell Death Differ. 2014;21(2):216–25.

    Article  CAS  PubMed  Google Scholar 

  23. Li X, et al. Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. Int J Mol Med. 2014;34(3):695–704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Dominici M, et al. Heterogeneity of multipotent mesenchymal stromal cells: from stromal cells to stem cells and vice versa. Transplantation. 2009;87(9 Suppl):S36–42.

    Article  PubMed  Google Scholar 

  25. Pal B, Das B. In vitro culture of naive human bone marrow mesenchymal stem cells: a stemness based approach. Front Cell Dev Biol. 2017;5:69.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Park KS, et al. Trophic molecules derived from human mesenchymal stem cells enhance survival, function, and angiogenesis of isolated islets after transplantation. Transplantation. 2010;89(5):509–17.

    CAS  PubMed  Google Scholar 

  27. Khan A, Hunter RL, Jagannath C. Emerging role of mesenchymal stem cells during tuberculosis: the fifth element in cell mediated immunity. Tuberculosis (Edinb). 2016;101S:S45–52.

    Article  CAS  Google Scholar 

  28. Kuwana M, et al. Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J Leukoc Biol. 2003;74(5):833–45.

    Article  CAS  PubMed  Google Scholar 

  29. Le Blanc K. Mesenchymal stromal cells: tissue repair and immune modulation. Cytotherapy. 2006;8(6):559–61.

    Article  PubMed  CAS  Google Scholar 

  30. Rasmusson I. Immune modulation by mesenchymal stem cells. Exp Cell Res. 2006;312(12):2169–79.

    Article  CAS  PubMed  Google Scholar 

  31. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001;7(6):259–64.

    Article  CAS  PubMed  Google Scholar 

  32. Doorn J, et al. Pro-osteogenic trophic effects by PKA activation in human mesenchymal stromal cells. Biomaterials. 2011;32(26):6089–98.

    Article  CAS  PubMed  Google Scholar 

  33. Chen L, et al. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One. 2008;3(4):e1886.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Huang X, et al. Three-dimensional co-culture of mesenchymal stromal cells and differentiated osteoblasts on human bio-derived bone scaffolds supports active multi-lineage hematopoiesis in vitro: functional implication of the biomimetic HSC niche. Int J Mol Med. 2016;38(4):1141–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Skrahin A, et al. Autologous mesenchymal stromal cell infusion as adjunct treatment in patients with multidrug and extensively drug-resistant tuberculosis: an open-label phase 1 safety trial. Lancet Respir Med. 2014;2(2):108–22.

    Article  PubMed  Google Scholar 

  36. Parida SK, et al. Cellular therapy in tuberculosis. Int J Infect Dis. 2015;32:32–8.

    Article  PubMed  Google Scholar 

  37. Skrahin A, et al. Effectiveness of a novel cellular therapy to treat multidrug-resistant tuberculosis. J Clin Tuberc Other Mycobact Dis. 2016;4:21–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yudintceva NM, et al. Application of the allogenic mesenchymal stem cells in the therapy of the bladder tuberculosis. J Tissue Eng Regen Med. 2018;12(3):e1580–93.

    Article  CAS  PubMed  Google Scholar 

  39. Kim HS, et al. Implication of NOD1 and NOD2 for the differentiation of multipotent mesenchymal stem cells derived from human umbilical cord blood. PLoS One. 2010;5(10):e15369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Khan A, et al. Mesenchymal stem cells internalize Mycobacterium tuberculosis through scavenger receptors and restrict bacterial growth through autophagy. Sci Rep. 2017;7(1):15010.

    Google Scholar 

  41. Yang K, et al. Mesenchymal stem cells detect and defend against gammaherpesvirus infection via the cGAS-STING pathway. Sci Rep. 2015;5:7820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rustad KC, Gurtner GC. Mesenchymal stem cells home to sites of injury and inflammation. Adv Wound Care (New Rochelle). 2012;1(4):147–52.

    Article  Google Scholar 

  43. Li Y, et al. Staphylococcus aureus infection of intestinal epithelial cells induces human umbilical cord-derived mesenchymal stem cell migration. Int Immunopharmacol. 2013;15(1):176–81.

    Article  CAS  PubMed  Google Scholar 

  44. Fakhari S, et al. Effect of Helicobacter pylori infection on stromal-derived factor-1/CXCR4 axis in bone marrow-derived mesenchymal stem cells. Adv Biomed Res. 2014;3:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Krasnodembskaya A, et al. Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. Am J Physiol Lung Cell Mol Physiol. 2012;302(10):L1003–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lombardo E, et al. Mesenchymal stem cells as a therapeutic tool to treat sepsis. World J Stem Cells. 2015;7(2):368–79.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mezey E, Nemeth K. Mesenchymal stem cells and infectious diseases: smarter than drugs. Immunol Lett. 2015;168(2):208–14.

    Article  CAS  PubMed  Google Scholar 

  48. Auletta JJ, Deans RJ, Bartholomew AM. Emerging roles for multipotent, bone marrow-derived stromal cells in host defense. Blood. 2012;119(8):1801–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Krasnodembskaya A, et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells. 2010;28(12):2229–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Meisel R, et al. Human but not murine multipotent mesenchymal stromal cells exhibit broad-spectrum antimicrobial effector function mediated by indoleamine 2,3-dioxygenase. Leukemia. 2011;25(4):648–54.

    Article  CAS  PubMed  Google Scholar 

  51. Brandau S, et al. Mesenchymal stem cells augment the anti-bacterial activity of neutrophil granulocytes. PLoS One. 2014;9(9):e106903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Raffaghello L, et al. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells. 2008;26(1):151–62.

    Article  CAS  PubMed  Google Scholar 

  53. Takeda K, et al. Mesenchymal stem cells recruit CCR2(+) monocytes to suppress allergic airway inflammation. J Immunol. 2018;200(4):1261–9.

    Article  CAS  PubMed  Google Scholar 

  54. Lo Sicco C, et al. Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Transl Med. 2017;6(3):1018–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nemeth K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15(1):42–9.

    Article  CAS  PubMed  Google Scholar 

  56. Tomioka H, et al. Characteristics of suppressor macrophages induced by mycobacterial and protozoal infections in relation to alternatively activated M2 macrophages. Clin Dev Immunol. 2012;2012:635451.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Abumaree MH, et al. Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Rev. 2013;9(5):620–41.

    Article  CAS  Google Scholar 

  58. Liu S, et al. Immune characterization of mesenchymal stem cells in human umbilical cord Wharton’s jelly and derived cartilage cells. Cell Immunol. 2012;278(1–2):35–44.

    Article  CAS  PubMed  Google Scholar 

  59. Liu L, et al. Mesenchymal stem cells ameliorate Th1-induced pre-eclampsia-like symptoms in mice via the suppression of TNF-alpha expression. PLoS One. 2014;9(2):e88036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Duffy MM, et al. Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Res Ther. 2011;2(4):34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Melief SM, et al. Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages. Stem Cells. 2013;31(9):1980–91.

    Article  CAS  PubMed  Google Scholar 

  62. Glenn JD, et al. Mesenchymal stem cells differentially modulate effector CD8+ T cell subsets and exacerbate experimental autoimmune encephalomyelitis. Stem Cells. 2014;32(10):2744–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Carrion F, et al. Opposing effect of mesenchymal stem cells on Th1 and Th17 cell polarization according to the state of CD4+ T cell activation. Immunol Lett. 2011;135(1–2):10–6.

    Article  CAS  PubMed  Google Scholar 

  64. Cao W, et al. Mesenchymal stem cells and adaptive immune responses. Immunol Lett. 2015;168(2):147–53.

    Article  CAS  PubMed  Google Scholar 

  65. Abomaray FM, et al. Human chorionic villous mesenchymal stem cells modify the functions of human dendritic cells, and induce an anti-inflammatory phenotype in CD1+ dendritic cells. Stem Cell Rev. 2015;11(3):423–41.

    Article  CAS  Google Scholar 

  66. de Oliveira Bravo M, Carvalho JL, Saldanha-Araujo F. Adenosine production: a common path for mesenchymal stem-cell and regulatory T-cell-mediated immunosuppression. Purinergic Signal. 2016;12(4):595–609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Peters W, et al. Chemokine receptor 2 serves an early and essential role in resistance to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2001;98(14):7958–63.

    Article  CAS  Google Scholar 

  68. Ernst JD. Mechanisms of M. tuberculosis immune evasion as challenges to TB vaccine design. Cell Host Microbe. 2018;24(1):34–42.

    Article  CAS  Google Scholar 

  69. Voskuil MI, et al. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med. 2003;198(5):705–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Naik SK, et al. Mouse bone marrow Sca-1(+) CD44(+) mesenchymal stem cells kill avirulent mycobacteria but not Mycobacterium tuberculosis through modulation of cathelicidin expression via the p38 mitogen-activated protein kinase-dependent pathway. Infect Immun. 2017;85(10):e00471-17.

    Google Scholar 

  71. Bonilla DL, et al. Autophagy regulates phagocytosis by modulating the expression of scavenger receptors. Immunity. 2013;39(3):537–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang K, et al. Macrophage-mediated inflammatory response decreases mycobacterial survival in mouse MSCs by augmenting NO production. Sci Rep. 2016;6:27326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Garhyan J, et al. Preclinical and clinical evidence of Mycobacterium tuberculosis persistence in the hypoxic niche of bone marrow mesenchymal stem cells after therapy. Am J Pathol. 2015;185(7):1924–34.

    Article  PubMed  Google Scholar 

  74. Rehman J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1292–8.

    Article  PubMed  Google Scholar 

  75. Liu GY, et al. ROS activates JNK-mediated autophagy to counteract apoptosis in mouse mesenchymal stem cells in vitro. Acta Pharmacol Sin. 2015;36(12):1473–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Beamer G, et al. Bone marrow mesenchymal stem cells provide an antibiotic-protective niche for persistent viable Mycobacterium tuberculosis that survive antibiotic treatment. Am J Pathol. 2014;184(12):3170–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lopes CS, et al. CD271+ Mesenchymal stem cells as a possible infectious niche for leishmania infantum. PLoS One. 2016;11(9):e0162927.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Jacobs SA, et al. Immunological characteristics of human mesenchymal stem cells and multipotent adult progenitor cells. Immunol Cell Biol. 2013;91(1):32–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Noone C, et al. IFN-gamma stimulated human umbilical-tissue-derived cells potently suppress NK activation and resist NK-mediated cytotoxicity in vitro. Stem Cells Dev. 2013;22(22):3003–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sinclair KA, et al. Mesenchymal stromal cells are readily recoverable from lung tissue, but not the alveolar space, in healthy humans. Stem Cells. 2016;34(10):2548–58.

    Article  CAS  PubMed  Google Scholar 

  81. Lee ST, et al. Effect of mesenchymal stem cell transplantation on the engraftment of human hematopoietic stem cells and leukemic cells in mice model. Int J Hematol. 2008;87(3):327–37.

    Article  CAS  PubMed  Google Scholar 

  82. Bensidhoum M, et al. Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood. 2004;103(9):3313–9.

    Article  CAS  PubMed  Google Scholar 

  83. Fu X, et al. Comparison of immunological characteristics of mesenchymal stem cells derived from human embryonic stem cells and bone marrow. Tissue Eng Part A. 2015;21(3–4):616–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ding DC, et al. Characterization of HLA-G and related immunosuppressive effects in human umbilical cord stroma-derived stem cells. Cell Transplant. 2016;25(2):217–28.

    Article  PubMed  Google Scholar 

  85. Feng CG, et al. Interferon-inducible immunity-related GTPase Irgm1 regulates IFN gamma-dependent host defense, lymphocyte survival and autophagy. Autophagy. 2009;5(2):232–4.

    Article  CAS  PubMed  Google Scholar 

  86. Nathan C, Xie QW. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994;78(6):915–8.

    Article  CAS  PubMed  Google Scholar 

  87. Wallis RS, et al. Tuberculosis--advances in development of new drugs, treatment regimens, host-directed therapies, and biomarkers. Lancet Infect Dis. 2016;16(4):e34–46.

    Article  CAS  PubMed  Google Scholar 

  88. Erokhin VV, et al. Systemic transplantation of autologous mesenchymal stem cells of the bone marrow in the treatment of patients with multidrug-resistant pulmonary tuberculosis. Probl Tuberk Bolezn Legk. 2008;(10):3–6.

    Google Scholar 

  89. Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  90. Giuliani M, et al. TLR ligands stimulation protects MSC from NK killing. Stem Cells. 2014;32(1):290–300.

    Article  CAS  PubMed  Google Scholar 

  91. Yu B, et al. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int J Cardiol. 2015;182:349–60.

    Article  PubMed  Google Scholar 

  92. Schwartz YS, et al. BCG infection in mice is promoted by naive mesenchymal stromal cells (MSC) and suppressed by poly(A:U)-conditioned MSC. Tuberculosis (Edinb). 2016;101:130–6.

    Article  CAS  Google Scholar 

  93. Sioud M, et al. Evidence for the involvement of galectin-3 in mesenchymal stem cell suppression of allogeneic T-cell proliferation. Scand J Immunol. 2010;71(4):267–74.

    Article  CAS  PubMed  Google Scholar 

  94. Mahon RN, Hafner R. Immune cell regulatory pathways unexplored as host-directed therapeutic targets for Mycobacterium tuberculosis: an opportunity to apply precision medicine innovations to infectious diseases. Clin Infect Dis. 2015;61Suppl 3:S200–16.

    Article  CAS  PubMed Central  Google Scholar 

  95. Singh P, Subbian S. Harnessing the mTOR pathway for tuberculosis treatment. Front Microbiol. 2018;9:70.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Tomchuck SL, et al. Mesenchymal stem cells as a novel vaccine platform. Front Cell Infect Microbiol. 2012;2:140.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinnaswamy Jagannath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, A., Jagannath, C. (2019). Interactions of Mycobacterium tuberculosis with Human Mesenchymal Stem Cells. In: Cirillo, J., Kong, Y. (eds) Tuberculosis Host-Pathogen Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-25381-3_5

Download citation

Publish with us

Policies and ethics