Skip to main content

Trehalose Dimycolate (Cord Factor) as a Contributing Factor to Tuberculosis Pathogenesis

  • Chapter
  • First Online:
Tuberculosis Host-Pathogen Interactions

Abstract

This chapter examines mycobacterial glycolipid trehalose 6,6-dimycolate (TDM; cord factor) as it relates to the development of tuberculosis (TB) pathogenesis. TDM, a major surface glycolipid, is recognized as the most widely studied “virulence factor” of Mycobacterium tuberculosis (MTB). It is the most abundant glycolipid on the surface of mycobacterial species and contributes to organism morphology. Although it is known to play multiple roles in models of TB pathogenesis, direct understanding of how it leads to development of clinical disease states during tuberculosis disease is not yet clear. TDM induces the production of proinflammatory cytokines and chemokines from innate macrophages. It can also induce defined lung pathologies to mimic many aspects of primary MTB infection, including induction of activated foreign body granulomas and pneumonitis in naïve mice, and hypersensitive immune granulomas or hyper-coagulation in sensitized mice. Identification of numerous potential host receptors for this glycolipid has triggered renewed investigation into the importance of TDM in the clinical manifestation of disease. Here, a historical review is presented to support regulated innate and adaptive immune responses to cord factor which have potential to affect development of related pathologies. Examination of recent hypotheses that link its physical structure to development of post primary disease is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koch R. The cure of consumption: further communications on a remedy for tuberculosis. London: W. Heinemann; 1890.

    Google Scholar 

  2. Koch Robert. 1880. Investigations into the etiology of traumatic infectious diseases. New Sydenham Society, London, United Kingdom; series v. 88. Translated by W. Watson Cheyne.

    Google Scholar 

  3. Koch R. Die Aetiologie der tuberculose. Berlin klin Wschschr Am Rev Tuberc 1932 Translation. 1882;25:298–323.

    Google Scholar 

  4. Sakula A. Robert koch: centenary of the discovery of the tubercle bacillus. Can Vet J. 1882;24(1983):127–31.

    Google Scholar 

  5. Bloch H. Studies on the virulence of tubercle bacilli; the relationship of the physiological state of the organisms to their pathogenicity. J Exp Med. 1950;92:507–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bloch H. Studies on the virulence of tubercle bacilli; isolation and biological properties of a constituent of virulent organisms. J Exp Med. 1950;91:197–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bloch H, Noll H. Studies on the virulence of tubercle bacilli; variations in virulence effected by tween 80 and thiosemicarbazone. J Exp Med. 1953;97:1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bloch H, Noll H. Studies on the virulence of tubercle bacilli. The effect of cord factor on murine tuberculosis. Br J Exp Path. 1955;36:8–17.

    CAS  Google Scholar 

  9. Bloch H, Sorkin E, Erlenmeyer H. A toxic lipid component of the tubercle bacillus (cord factor). I. Isolation from petroleum ether extracts of young bacterial cultures. Am Rev Tuberc. 1953;67:629–43.

    CAS  PubMed  Google Scholar 

  10. Sorkin E, Erlenmeyer H, Bloch H. Purification of a lipid material (‘cord factor’) obtained from young cultures of tubercle bacilli. Nature. 1952;170:124.

    Article  CAS  PubMed  Google Scholar 

  11. Hunter RL, Venkataprasad N, Olsen MR. The role of trehalose dimycolate (cord factor) on morphology of virulent M. tuberculosis in vitro. Tuberculosis. 2006;86:349–56.

    Article  CAS  PubMed  Google Scholar 

  12. Kato M, Maeda J. Isolation and biochemical activities of trehalose-6-monomycolate of Mycobacterium tuberculosis. Infect Immun. 1974;9:8–14.

    Google Scholar 

  13. Kato M. Cord factor--its chemistry, biochemistry and immunochemistry. Nihon saikingaku zasshi. 1974;29:313–20.

    Article  CAS  PubMed  Google Scholar 

  14. Seggev J, Goren MB, Carr RI, Kirkpatrick CH. Interstitial and hemorrhagic pneumonitis induced by mycobacterial trehalose dimycolate. Am J Pathol. 1982;106:348–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Middlebrook G, Dubos RJ, Pierce C. Virulence and morphological characteristics of mammalian tubercle bacilli. J Exp Med. 1947;86:175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hunter RL. Tuberculosis as a three-act play: a new paradigm for the pathogenesis of pulmonary tuberculosis. Tuberculosis. 2016;97:8–17.

    Article  PubMed  Google Scholar 

  17. Hunter RL, Hwang SA, Jagannath C, Actor JK. Cord factor as an invisibility cloak? A hypothesis for asymptomatic TB persistence. Tuberculosis. 2016;101S:S2–8.

    Article  PubMed  Google Scholar 

  18. Youmans GP. Chapter 4. Mycobacterial lipids: chemistry and biologic activities. In: Youmans GP, editor. Tuberculosis. Philadelphia: W. B. Saunders Co.; 1979. p. 63–193.

    Google Scholar 

  19. Goren M. Cord factor revisited: a tribute to the late Hubert Bloch. Tubercle. 1975;56:65–71.

    Article  CAS  PubMed  Google Scholar 

  20. Behling CA, Nolte FS, Tinkley A, Hunter RL. The effect of tyloxapol on the surface lipids and biologic activities of BCG. Vaccine Res. 1994;3:1–14.

    CAS  Google Scholar 

  21. Indrigo J, Hunter RL Jr, Actor JK. Cord factor trehalose 6,6′-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages. Microbiology. 2003;149:2049–59.

    Article  CAS  PubMed  Google Scholar 

  22. Katti MK, Dai G, Armitige LY, Rivera Marrero C, Daniel S, Singh CR, Lindsey DR, Dhandayuthapani S, Hunter RL, Jagannath C. The Delta fbpA mutant derived from Mycobacterium tuberculosis H37Rv has an enhanced susceptibility to intracellular antimicrobial oxidative mechanisms, undergoes limited phagosome maturation and activates macrophages and dendritic cells. Cell Microbiol. 2008;10:1286–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bakhru P, Sirisaengtaksin N, Soudani E, Mukherjee S, Khan A, Jagannath C. BCG vaccine mediated reduction in the MHC-II expression of macrophages and dendritic cells is reversed by activation of toll-like receptors 7 and 9. Cell Immunol. 2014;287:53–61.

    Article  CAS  PubMed  Google Scholar 

  24. Indrigo J, Hunter RL Jr, Actor JK. Influence of trehalose 6,6′-dimycolate (TDM) during mycobacterial infection of bone marrow macrophages. Microbiology. 2002;148:1991–8.

    Article  CAS  PubMed  Google Scholar 

  25. Bloch H, Noll H. Studies on the virulence of tubercle bacilli; the effect of cord factor on murine tuberculosis. Br J Exp Pathol. 1955;36:8–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yarkoni E, Rapp HJ. Influence of oil and tween concentrations on enhanced endotoxin lethality in mice pretreated with emulsified trehalose-6,6′-dimycolate (cord factor). Infect Immun. 1979;24:571–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sakurai T, Saiki I, Ishida H, Takeda K, Azuma I. Lethal toxicity and adjuvant activities of synthetic TDM and its related compounds in mice. Vaccine. 1989;7:269–74.

    Article  CAS  PubMed  Google Scholar 

  28. Brennan PJ, Goren MB. Mycobacterial glycolipids as bacterial antigens. Biochem Soc Trans. 1977;5:1687–93.

    Article  CAS  PubMed  Google Scholar 

  29. Bekierkunst A, Levij IS, Yarkoni E, Vilkas E, Adam A, Lederer E. Granuloma formation induced in mice by chemically defined mycobacterial fractions. J Bacteriol. 1969;100:95–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Saito R, Tanaka A, Sugiyama K, Azuma I, Yamamura Y. Adjuvant effect of cord factor, a mycobacterial lipid. Infect Immun. 1976;13:776–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Thanna S, Sucheck SJ. Targeting the trehalose utilization pathways of Mycobacterium tuberculosis. MedChemComm. 2016;7:69–85.

    Article  CAS  PubMed  Google Scholar 

  32. Jankute M, Cox JA, Harrison J, Besra GS. Assembly of the mycobacterial cell wall. Annu Rev Microbiol. 2015;69:405–23.

    Article  CAS  PubMed  Google Scholar 

  33. Torrelles JB, Schlesinger LS. Diversity in Mycobacterium tuberculosis mannosylated cell wall determinants impacts adaptation to the host. Tuberculosis. 2010;90:84–93.

    Article  CAS  PubMed  Google Scholar 

  34. Brennan PJ, Nikaido H. The envelope of mycobacteria. Annu Rev Biochem. 1995;64:29–63.

    Article  CAS  PubMed  Google Scholar 

  35. McNeil MR, Brennan PJ. Structure, function and biogenesis of the cell envelope of mycobacteria in relation to bacterial physiology, pathogenesis and drug resistance; some thoughts and possibilities arising from recent structural information. Res Microbiol. 1991;142:451–63.

    Article  CAS  PubMed  Google Scholar 

  36. Korf J, Stoltz A, Verschoor J, De Baetselier P, Grooten J. The Mycobacterium tuberculosis cell wall component mycolic acid elicits pathogen-associated host innate immune responses. Eur J Immunol. 2005;35:890–900.

    Article  CAS  PubMed  Google Scholar 

  37. Fujita Y, Naka T, McNeil MR, Yano I. Intact molecular characterization of cord factor (trehalose 6,6′-dimycolate) from nine species of mycobacteria by MALDI-TOF mass spectrometry. Microbiology. 2005;151:3403–16.

    Article  CAS  PubMed  Google Scholar 

  38. Noll H, Bloch H, Asselineau J, Lederer E. The chemical structure of the cord factor of Mycobacterium tuberculosis. Biochim Biophys Acta. 1956;20:299–309.

    Article  CAS  PubMed  Google Scholar 

  39. Takayama K, Wang C, Besra GS. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev. 2005;18:81–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Veyron-Churlet R, Bigot S, Guerrini O, Verdoux S, Malaga W, Daffe M, Zerbib D. The biosynthesis of mycolic acids in Mycobacterium tuberculosis relies on multiple specialized elongation complexes interconnected by specific protein-protein interactions. J Mol Biol. 2005;353:847–58.

    Article  CAS  PubMed  Google Scholar 

  41. Chatterjee D. The mycobacterial cell wall: structure, biosynthesis and sites of drug action. Curr Opin Chem Biol. 1997;1:579–88.

    Article  CAS  PubMed  Google Scholar 

  42. Belisle JT, Vissa VD, Sievert T, Takayama K, Brennan PJ, Besra GS. Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science. 1997;276:1420–2.

    Article  CAS  PubMed  Google Scholar 

  43. Armitige LY, Jagannath C, Wanger AR, Norris SJ. Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: effect on growth in culture and in macrophages. Infect Immun. 2000;68:767–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Behling CA, Bennett B, Takayama K, Hunter RL. Development of a trehalose 6,6′-dimycolate model which explains cord formation by Mycobacterium tuberculosis. Infect Immun. 1993;61:2296–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Schabbing RW, Garcia A, Hunter RL. Characterization of the trehalose 6,6′-dimycolate surface monolayer by scanning tunneling microscopy. Infect Immun. 1994;62:754–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Retzinger GS, Meredith SC, Hunter RL, Takayama K, Kezdy FJ. Identification of the physiologically active state of the mycobacterial glycolipid trehalose 6,6′-dimycolate and the role of fibrinogen in the biologic activities of trehalose 6,6′-dimycolate monolayers. J Immunol. 1982;129:735–44.

    CAS  PubMed  Google Scholar 

  47. Retzinger GS, Meredith SC, Takayama K, Hunter RL, Kezdy FJ. The role of surface in the biological activities of trehalose 6,6′-dimycolate. Surface properties and development of a model system. J Biol Chem. 1981;256:8208–16.

    CAS  PubMed  Google Scholar 

  48. Hunter RL, Olsen MR, Jagannath C, Actor JK. Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a revised description of the pathology of secondary disease. Ann Clin Lab Sci. 2006;36:371–86.

    CAS  PubMed  Google Scholar 

  49. Hunter RL, Armitige L, Jagannath C, Actor JK. TB research at UT-Houston--a review of cord factor: new approaches to drugs, vaccines and the pathogenesis of tuberculosis. Tuberculosis. 2009;89(Suppl 1):S18–25.

    Article  PubMed  Google Scholar 

  50. Mustafa T, Leversen NA, Sviland L, Wiker HG. Differential in vivo expression of mycobacterial antigens in Mycobacterium tuberculosis infected lungs and lymph node tissues. BMC Infect Dis. 2014;14:535.

    Google Scholar 

  51. Geisel RE, Sakamoto K, Russell DG, Rhoades ER. In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette-Guerin is due principally to trehalose mycolates. J Immunol. 2005;174:5007–15.

    Article  CAS  PubMed  Google Scholar 

  52. Rhoades E, Hsu F, Torrelles JB, Turk J, Chatterjee D, Russell DG. Identification and macrophage-activating activity of glycolipids released from intracellular Mycobacterium bovis BCG. Mol Microbiol. 2003;48:875–88.

    Article  CAS  PubMed  Google Scholar 

  53. Rhoades ER, Geisel RE, Butcher BA, McDonough S, Russell DG. Cell wall lipids from Mycobacterium bovis BCG are inflammatory when inoculated within a gel matrix: characterization of a new model of the granulomatous response to mycobacterial components. Tuberculosis. 2005;85:159–76.

    Article  CAS  PubMed  Google Scholar 

  54. Perez RL, Roman J, Roser S, Little C, Olsen M, Indrigo J, Hunter RL, Actor JK. Cytokine message and protein expression during lung granuloma formation and resolution induced by the mycobacterial cord factor trehalose-6,6′-dimycolate. J Interf Cytokine Res. 2000;20:795–804.

    Article  CAS  Google Scholar 

  55. Perez RL, Roman J, Staton GW Jr, Hunter RL. Extravascular coagulation and fibrinolysis in murine lung inflammation induced by the mycobacterial cord factor trehalose-6,6′-dimycolate. Am J Respir Crit Care Med. 1994;149:510–8.

    Article  CAS  PubMed  Google Scholar 

  56. Actor JK, Olsen M, Hunter RL Jr, Geng YJ. Dysregulated response to mycobacterial cord factor trehalose-6,6′-dimycolate in CD1D−/− mice. J Interf Cytokine Res. 2001;21:1089–96.

    Article  CAS  Google Scholar 

  57. Yarkoni E, Rapp HJ. Granuloma formation in lungs of mice after intravenous administration of emulsified trehalose-6,6′-dimycolate (cord factor): reaction intensity depends on size distribution of the oil droplets. Infect Immun. 1977;18:552–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee WB, Kang JS, Yan JJ, Lee MS, Jeon BY, Cho SN, Kim YJ. Neutrophils promote mycobacterial trehalose dimycolate-induced lung inflammation via the Mincle pathway. PLoS Pathog. 2012;8:e1002614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Arora R, Armitige L, Wanger A, Hunter RL, Hwang SA. Association of pellicle growth morphological characteristics and clinical presentation of Mycobacterium tuberculosis isolates. Tuberculosis. 2016;101S:S63–8.

    Article  PubMed  Google Scholar 

  60. Hunter RL, Olsen M, Jagannath C, Actor JK. Trehalose 6,6′-dimycolate and lipid in the pathogenesis of caseating granulomas of tuberculosis in mice. Am J Pathol. 2006;168:1249–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hunter RL. Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis. 2011;91:497–509.

    Article  PubMed  Google Scholar 

  62. Hunter RL, Actor JK, Hwang SA, Karev V, Jagannath C. Pathogenesis of post primary tuberculosis: immunity and hypersensitivity in the development of cavities. Ann Clin Lab Sci. 2014;44:365–87.

    PubMed  Google Scholar 

  63. Goren M, Brennan P. Mycobacterial lipids: chemistry and biologic activities. In: Youmans G, editor. Tuberculosis. Philadelphia: W.B. Saunders; 1979. p. 63–193.

    Google Scholar 

  64. Fujiwara N, Oka S, Ide M, Kashima K, Honda T, Yano I. Production and partial characterization of antibody to cord factor (trehalose 6,6′-dimycolate) in mice. Microbiol Immunol. 1999;43:785–93.

    Article  CAS  PubMed  Google Scholar 

  65. Kato M. Immunochemical properties of anti-cord factor antibody. Infect Immun. 1973;7:9–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kato M. Effect of anti-cord factor antibody on experimental tuberculosis in mice. Infect Immun. 1973;7:14–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Seggev JS, Goren MB, Carr RI, Rubenstein E, Kirkpatrick CH. Pathogenesis of trehalose dimycolate-induced interstitial pneumonitis. IV. Evidence against roles for immunoglobulins and the complement system. Exp Lung Res. 1988;14:431–44.

    Article  CAS  PubMed  Google Scholar 

  68. Borders CW, Courtney A, Ronen K, Pilar Laborde-Lahoz M, Guidry TV, Hwang SA, Olsen M, Hunter RL Jr, Hollmann TJ, Wetsel RA, Actor JK. Requisite role for complement C5 and the C5a receptor in granulomatous response to mycobacterial glycolipid trehalose 6,6′-dimycolate. Scand J Immunol. 2005;62:123–30.

    Article  CAS  PubMed  Google Scholar 

  69. Welsh KJ, Abbott AN, Hwang SA, Indrigo J, Armitige LY, Blackburn MR, Hunter RL Jr, Actor JK. A role for tumour necrosis factor-alpha, complement C5 and interleukin-6 in the initiation and development of the mycobacterial cord factor trehalose 6,6′-dimycolate induced granulomatous response. Microbiology. 2008;154:1813–24.

    Article  CAS  PubMed  Google Scholar 

  70. Guidry TV, Hunter RL Jr, Actor JK. CD3+ cells transfer the hypersensitive granulomatous response to mycobacterial glycolipid trehalose 6,6′-dimycolate in mice. Microbiology. 2006;152:3765–75.

    Article  CAS  PubMed  Google Scholar 

  71. Guidry TV, Hunter RL Jr, Actor JK. Mycobacterial glycolipid trehalose 6,6′-dimycolate-induced hypersensitive granulomas: contribution of CD4+ lymphocytes. Microbiology. 2007;153:3360–9.

    Article  CAS  PubMed  Google Scholar 

  72. Oiso R, Fujiwara N, Yamagami H, Maeda S, Matsumoto S, Nakamura S, Oshitani N, Matsumoto T, Arakawa T, Kobayashi K. Mycobacterial trehalose 6,6′-dimycolate preferentially induces type 1 helper T cell responses through signal transducer and activator of transcription 4 protein. Microb Pathog. 2005;39:35–43.

    Article  CAS  PubMed  Google Scholar 

  73. Yamagami H, Matsumoto T, Fujiwara N, Arakawa T, Kaneda K, Yano I, Kobayashi K. Trehalose 6,6′-dimycolate (cord factor) of Mycobacterium tuberculosis induces foreign-body- and hypersensitivity-type granulomas in mice. Infect Immun. 2001;69:810–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guidry TV, Olsen M, Kil KS, Hunter RL Jr, Geng YJ, Actor JK. Failure of CD1D−/− mice to elicit hypersensitive granulomas to mycobacterial cord factor trehalose 6,6′-dimycolate. J Interf Cytokine Res. 2004;24:362–71.

    Article  CAS  Google Scholar 

  75. Otsuka A, Matsunaga I, Komori T, Tomita K, Toda Y, Manabe T, Miyachi Y, Sugita M. Trehalose dimycolate elicits eosinophilic skin hypersensitivity in mycobacteria-infected guinea pigs. J Immunol. 2008;181:8528–33.

    Article  CAS  PubMed  Google Scholar 

  76. Smet M, Pollard C, De Beuckelaer A, Van Hoecke L, Vander Beken S, De Koker S, Al Dulayymi JR, Huygen K, Verschoor J, Baird MS, Grooten J. Mycobacterium tuberculosis-associated synthetic mycolates differentially exert immune stimulatory adjuvant activity. Eur J Immunol. 2016;46:2149–54.

    Article  CAS  PubMed  Google Scholar 

  77. McMullen AM, Hwang SA, O’Shea K, Aliru ML, Actor JK. Evidence for a unique species-specific hypersensitive epitope in Mycobacterium tuberculosis derived cord factor. Tuberculosis. 2013;93(Suppl):S88–93.

    Article  CAS  PubMed  Google Scholar 

  78. Hossain MM, Norazmi MN. Pattern recognition receptors and cytokines in Mycobacterium tuberculosis infection--the double-edged sword? Biomed Res Int. 2013;2013:179174.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bowdish DM, Sakamoto K, Kim MJ, Kroos M, Mukhopadhyay S, Leifer CA, Tryggvason K, Gordon S, Russell DG. MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis. PLoS Pathog. 2009;5:e1000474.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Mortaz E, Adcock IM, Tabarsi P, Masjedi MR, Mansouri D, Velayati AA, Casanova JL, Barnes PJ. Interaction of pattern recognition receptors with Mycobacterium tuberculosis. J Clin Immunol. 2014;35(1):1–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Russell DG. Who puts the tubercle in tuberculosis? Nat Rev Microbiol. 2007;5:39–47.

    Article  CAS  PubMed  Google Scholar 

  82. Ishikawa E, Mori D, Yamasaki S. Recognition of mycobacterial lipids by immune receptors. Trends Immunol. 2017;38:66–76.

    Article  CAS  PubMed  Google Scholar 

  83. Oswald IP, Dozois CM, Fournout S, Petit JF, Lemaire G. Tumor necrosis factor is required for the priming of peritoneal macrophages by trehalose dimycolate. Eur Cytokine Netw. 1999;10:533–40.

    CAS  PubMed  Google Scholar 

  84. Oswald IP, Dozois CM, Petit JF, Lemaire G. Interleukin-12 synthesis is a required step in trehalose dimycolate-induced activation of mouse peritoneal macrophages. Infect Immun. 1997;65:1364–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Afroun S, Oswald IP, Lantier F, Petit JF, Lemaire G. Stimulation of antimycobacterial activity in mouse peritoneal macrophages by priming with trehalose dimycolate (TDM). FEMS Microbiol Immunol. 1991;3:257–67.

    Article  CAS  PubMed  Google Scholar 

  86. Lang R. Recognition of the mycobacterial cord factor by Mincle: relevance for granuloma formation and resistance to tuberculosis. Front Immunol. 2013;4:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Schoenen H, Bodendorfer B, Hitchens K, Manzanero S, Werninghaus K, Nimmerjahn F, Agger EM, Stenger S, Andersen P, Ruland J, Brown GD, Wells C, Lang R. Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J Immunol. 2010;184:2756–60.

    Article  CAS  PubMed  Google Scholar 

  88. Ishikawa E, Ishikawa T, Morita YS, Toyonaga K, Yamada H, Takeuchi O, Kinoshita T, Akira S, Yoshikai Y, Yamasaki S. Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med. 2009;206:2879–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Matsunaga I, Moody DB. Mincle is a long sought receptor for mycobacterial cord factor. J Exp Med. 2009;206:2865–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Werninghaus K, Babiak A, Gross O, Holscher C, Dietrich H, Agger EM, Mages J, Mocsai A, Schoenen H, Finger K, Nimmerjahn F, Brown GD, Kirschning C, Heit A, Andersen P, Wagner H, Ruland J, Lang R. Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRgamma-Syk-Card9-dependent innate immune activation. J Exp Med. 2009;206:89–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. LeibundGut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, Schweighoffer E, Tybulewicz V, Brown GD, Ruland J, e Sousa CR. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007;8:630–8.

    Article  CAS  PubMed  Google Scholar 

  92. Martinez N, Ketheesan N, West K, Vallerskog T, Kornfeld H. Impaired recognition of Mycobacterium tuberculosis by alveolar macrophages from diabetic mice. J Infect Dis. 2016;214:1629–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Deretic V, Fratti RA. Mycobacterium tuberculosis phagosome. Mol Microbiol. 1999;31:1603–9.

    Article  CAS  PubMed  Google Scholar 

  94. Fratti RA, Vergne I, Chua J, Skidmore J, Deretic V. Regulators of membrane trafficking and Mycobacterium tuberculosis phagosome maturation block. Electrophoresis. 2000;21:3378–85.

    Article  CAS  PubMed  Google Scholar 

  95. Russell DG. Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol. 2001;2:569–77.

    Article  CAS  PubMed  Google Scholar 

  96. Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, Allen RD, Gluck SL, Heuser J, Russell DG. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science. 1994;263:678–81.

    Article  CAS  PubMed  Google Scholar 

  97. Patin EC, Geffken AC, Willcocks S, Leschczyk C, Haas A, Nimmerjahn F, Lang R, Ward TH, Schaible UE. Trehalose dimycolate interferes with FcgammaR-mediated phagosome maturation through Mincle, SHP-1 and FcgammaRIIB signalling. PLoS One. 2017;12:e0174973.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Roche CM, Smith A, Lindsey DR, Meher A, Schluns K, Arora A, Armitige LY, Jagannath C. The DeltafbpA attenuated candidate vaccine from Mycobacterium tuberculosis, H37Rv primes for a stronger T-bet dependent Th1 immunity in mice. Tuberculosis. 2011;91(Suppl 1):S96–S104.

    Article  CAS  PubMed  Google Scholar 

  99. Saikolappan S, Estrella J, Sasindran SJ, Khan A, Armitige LY, Jagannath C, Dhandayuthapani S. The fbpA/sapM double knock out strain of Mycobacterium tuberculosis is highly attenuated and immunogenic in macrophages. PLoS One. 2012;7:e36198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lindsey DR, Dhandayuthapani S, Jagannath C. Anti-tuberculosis immunity induced in mice by vaccination with Mycobacterium smegmatis over-expressing antigen 85B is due to the increased influx of IFNgamma-positive CD4 T cells into the lungs. Tuberculosis. 2009;89(Suppl 1):S46–8.

    Article  PubMed  Google Scholar 

  101. Queiroz A, Riley LW. Bacterial immunostat: Mycobacterium tuberculosis lipids and their role in the host immune response. Rev Soc Bras Med Trop. 2017;50:9–18.

    Article  PubMed  Google Scholar 

  102. Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol. 2012;12:352–66.

    Article  CAS  PubMed  Google Scholar 

  103. Silva Miranda M, Breiman A, Allain S, Deknuydt F, Altare F. The tuberculous granuloma: an unsuccessful host defence mechanism providing a safety shelter for the bacteria? Clin Dev Immunol. 2012;2012:139127.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Khader SA, Rangel-Moreno J, Fountain JJ, Martino CA, Reiley WW, Pearl JE, Winslow GM, Woodland DL, Randall TD, Cooper AM. In a murine tuberculosis model, the absence of homeostatic chemokines delays granuloma formation and protective immunity. J Immunol. 2009;183:8004–14.

    Article  CAS  PubMed  Google Scholar 

  105. Cooper AM, Khader SA. The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. Immunol Rev. 2008;226:191–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Orme IM, Basaraba RJ. The formation of the granuloma in tuberculosis infection. Semin Immunol. 2014;26:601–9.

    Article  PubMed  Google Scholar 

  107. Orme IM, Robinson RT, Cooper AM. The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol. 2015;16:57–63.

    Article  CAS  PubMed  Google Scholar 

  108. Actor JK, Olsen M, Jagannath C, Hunter RL. Relationship of survival, organism containment, and granuloma formation in acute murine tuberculosis. J Interf Cytokine Res. 1999;19:1183–93.

    Article  CAS  Google Scholar 

  109. Flynn JL, Chan J. What’s good for the host is good for the bug. Trends Microbiol. 2005;13:98–102.

    Article  CAS  PubMed  Google Scholar 

  110. Russell DG. Mycobacterium tuberculosis and the intimate discourse of a chronic infection. Immunol Rev. 2011;240:252–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Baba T, Natsuhara Y, Kaneda K, Yano I. Granuloma formation activity and mycolic acid composition of mycobacterial cord factor. Cell Mol Life Sci. 1997;53:227–32.

    Article  CAS  PubMed  Google Scholar 

  112. Behling CA, Perez RL, Kidd MR, Staton GW Jr, Hunter RL. Induction of pulmonary granulomas, macrophage procoagulant activity, and tumor necrosis factor-alpha by trehalose glycolipids. Ann Clin Lab Sci. 1993;23:256–66.

    CAS  PubMed  Google Scholar 

  113. Hamasaki N, Isowa K, Kamada K, Terano Y, Matsumoto T, Arakawa T, Kobayashi K, Yano I. In vivo administration of mycobacterial cord factor (Trehalose 6, 6′-dimycolate) can induce lung and liver granulomas and thymic atrophy in rabbits. Infect Immun. 2000;68:3704–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Actor JK. Mycobacterial TDM: a coat to modulate post primary pathogenesis? Mycobact Dis. 2012;2:e106.

    Article  Google Scholar 

  115. Sakai Y, Uchida K, Nakayama H. Histopathological features and expression profiles of cytokines, chemokines and SOCS family proteins in trehalose 6,6′-dimycolate-induced granulomatous lesions. Inflamm Res. 2011;60:371–8.

    Article  CAS  PubMed  Google Scholar 

  116. Abbott AN, Guidry TV, Welsh KJ, Thomas AM, Kling MA, Hunter RL, Actor JK. 11beta-hydroxysteroid dehydrogenases are regulated during the pulmonary granulomatous response to the mycobacterial glycolipid trehalose-6,6′-dimycolate. Neuroimmunomodulation. 2009;16:147–54.

    Article  CAS  PubMed  Google Scholar 

  117. Ryll R, Kumazawa Y, Yano I. Immunological properties of trehalose dimycolate (cord factor) and other mycolic acid-containing glycolipids--a review. Microbiol Immunol. 2001;45:801–11.

    Article  CAS  PubMed  Google Scholar 

  118. Takimoto H, Maruyama H, Shimada KI, Yakabe R, Yano I, Kumazawa Y. Interferon-gamma independent formation of pulmonary granuloma in mice by injections with trehalose dimycolate (cord factor), lipoarabinomannan and phosphatidylinositol mannosides isolated from Mycobacterium tuberculosis. Clin Exp Immunol. 2006;144:134–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Actor JK, Indrigo J, Beachdel CM, Olsen M, Wells A, Hunter RL Jr, Dasgupta A. Mycobacterial glycolipid cord factor trehalose 6,6′-dimycolate causes a decrease in serum cortisol during the granulomatous response. Neuroimmunomodulation. 2002;10:270–82.

    Article  PubMed  CAS  Google Scholar 

  120. Abbott AN, Welsh KJ, Hwang SA, Ploszaj P, Choudhury T, Boyd S, Blackburn MR, Hunter RL Jr, Actor JK. IL-6 mediates 11betaHSD type 2 to effect progression of the mycobacterial cord factor trehalose 6,6′-dimycolate-induced granulomatous response. Neuroimmunomodulation. 2011;18:212–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Feinberg H, Jegouzo SA, Rowntree TJ, Guan Y, Brash MA, Taylor ME, Weis WI, Drickamer K. Mechanism for recognition of an unusual mycobacterial glycolipid by the macrophage receptor mincle. J Biol Chem. 2013;288:28457–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bekierkunst A, Yarkoni E. Granulomatous hypersensitivity to trehalose 6,6′-dimycolate (cord factor) in mice infected with BCG. Infect Immun. 1973;7:631–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Actor JK. Lactoferrin: A modulator for immunity against tuberculosis related granulomatous pathology. Mediators Inflamm. 2015;2015:409596. PMID: 26788020.

    Google Scholar 

  124. Fujita Y, Okamoto Y, Uenishi Y, Sunagawa M, Uchiyama T, Yano I. Molecular and supra-molecular structure related differences in toxicity and granulomatogenic activity of mycobacterial cord factor in mice. Microb Pathog. 2007;43:10–21.

    Article  CAS  PubMed  Google Scholar 

  125. Yarkoni E, Rapp HJ. Toxicity of emulsified trehalose-6,6′-dimycolate (cord factor) in mice depends on size distribution of mineral oil droplets. Infect Immun. 1978;20:856–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Glickman MS, Cox JS, Jacobs WR Jr. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell. 2000;5:717–27.

    Article  CAS  PubMed  Google Scholar 

  127. Rao V, Gao F, Chen B, Jacobs WR Jr, Glickman MS. Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis -induced inflammation and virulence. J Clin Invest. 2006;116:1660–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rao V, Fujiwara N, Porcelli SA, Glickman MS. Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med. 2005;201:535–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hunter RL, Jagannath C, Actor JK. Pathology of postprimary tuberculosis in humans and mice: contradiction of long-held beliefs. Tuberculosis. 2007;87:267–78.

    Article  PubMed  Google Scholar 

  130. Dannenberg A. Tuberculosis and nontuberculosis mycobacterial infections. In: Schlossberg D, editor. Pathophysiology: basic aspects. Philadelphia: W. B. Saunders; 1999. p. 26–7.

    Google Scholar 

  131. Paige C, Bishai WR. Penitentiary or penthouse condo: the tuberculous granuloma from the microbe’s point of view. Cell Microbiol. 2010;12:301–9.

    Article  CAS  PubMed  Google Scholar 

  132. Kallenius G, Correia-Neves M, Buteme H, Hamasur B, Svenson SB. Lipoarabinomannan, and its related glycolipids, induce divergent and opposing immune responses to Mycobacterium tuberculosis depending on structural diversity and experimental variations. Tuberculosis. 2016;96:120–30.

    Article  PubMed  CAS  Google Scholar 

  133. Fukuda T, Matsumura T, Ato M, Hamasaki M, Nishiuchi Y, Murakami Y, Maeda Y, Yoshimori T, Matsumoto S, Kobayashi K, Kinoshita T, Morita YS. Critical roles for lipomannan and lipoarabinomannan in cell wall integrity of mycobacteria and pathogenesis of tuberculosis. MBio. 2013;4:e00472–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Donnachie E, Fedotova EP, Hwang SA. Trehalose 6,6-Dimycolate from Mycobacterium tuberculosis induces hypercoagulation. Am J Pathol. 2016;186:1221–33.

    Article  CAS  PubMed  Google Scholar 

  135. Hwang SA, Byerly CD, Actor JK. Mycobacterial trehalose 6,6’-dimycolate induced vascular occlusion is accompanied by subendothelial inflammation. Tuberculosis (Edinb). 2019:116S:S118-S122. PMID: 31072690.

    Google Scholar 

  136. Hunter RL. On the pathogenesis of post primary tuberculosis: the role of bronchial obstruction in the pathogenesis of cavities. Tuberculosis. 2011;91(Suppl 1):S6–10.

    Article  PubMed  Google Scholar 

  137. Hunter RL, Hwang SA, Jagannath C, Actor JK. Cord factor as an invisibility cloak? A hypothesis for asymptomatic TB persistence. Tuberculosis (Edinb). 2016;101:S2–8.

    Article  Google Scholar 

  138. Welsh KJ, Hunter RL, Actor JK. Trehalose 6,6′-dimycolate--a coat to regulate tuberculosis immunopathogenesis. Tuberculosis. 2013;93(Suppl):S3–9.

    Article  CAS  PubMed  Google Scholar 

  139. Kim MJ, Wainwright HC, Locketz M, Bekker LG, Walther GB, Dittrich C, Visser A, Wang W, Hsu FF, Wiehart U, Tsenova L, Kaplan G, Russell DG. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med. 2010;2:258–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gideon HP, Flynn JL. Latent tuberculosis: what the host “sees”? Immunol Res. 2011;50:202–12.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Hunter RL. On the pathogenesis of post primary tuberculosis: the role of bronchial obstruction in the pathogenesis of cavities. Tuberculosis (Edinb). 2011;91(Suppl 1):S6–S10.

    Article  Google Scholar 

  142. Syed SS, Hunter RL Jr. Studies on the toxic effects of quartz and a mycobacterial glycolipid, trehalose 6,6′-dimycolate. Ann Clin Lab Sci. 1997;27:375–83.

    CAS  PubMed  Google Scholar 

  143. Rich A. The pathogenesis of tuberculosis, Charles C. Sringfield: Thomas; 1951.

    Google Scholar 

  144. Ozeki Y, Kaneda K, Fujiwara N, Morimoto M, Oka S, Yano I. In vivo induction of apoptosis in the thymus by administration of mycobacterial cord factor (trehalose 6,6′-dimycolate). Infect Immun. 1997;65:1793–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Ryll R, Watanabe K, Fujiwara N, Takimoto H, Hasunuma R, Kumazawa Y, Okada M, Yano I. Mycobacterial cord factor, but not sulfolipid, causes depletion of NKT cells and upregulation of CD1d1 on murine macrophages. Microbes Infect. 2001;3:611–9.

    Article  CAS  PubMed  Google Scholar 

  146. Saitoh T, Yano I, Kumazawa Y, Takimoto H. Pulmonary TCR gammadelta T cells induce the early inflammation of granuloma formation by a glycolipid trehalose 6,6′-dimycolate (TDM) isolated from Mycobacterium tuberculosis. Immunopharmacol Immunotoxicol. 2012;34:815–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A special note of appreciation goes to colleagues Shen-An Hwang, PhD, Chinnaswamy Jagannath, PhD, and Robert L. Hunter, MD, PhD, for their discussions and insights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey K. Actor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Actor, J.K. (2019). Trehalose Dimycolate (Cord Factor) as a Contributing Factor to Tuberculosis Pathogenesis. In: Cirillo, J., Kong, Y. (eds) Tuberculosis Host-Pathogen Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-25381-3_3

Download citation

Publish with us

Policies and ethics