Skip to main content

Fourier’s Optics

  • Chapter
  • First Online:
Physical Optics

Part of the book series: UNITEXT for Physics ((UNITEXTPH))

  • 2153 Accesses

Abstract

We have seen that, in Fresnel’s approximation the propagation of a wave between two parallel planes can be expressed in terms of a Fourier’s transform. Here, we examine an alternative technique, relying on the fact that the field present on the first plane can be represented by its spectrum in plane waves, for which, in a homogeneous space, one can determine their propagation in a simple way. By recombining these waves, one can therefore easily rebuild the field on the second plane with an inverse transform. This fact has two important applications, the first concerns the mathematical and numerical techniques that can be used to calculate the diffracted field, and the second is, in a certain sense, opposite to the first and concerns the processing of signals by optical means. In particular, we will briefly discuss some topics that make use of the Fourier’s transform, including sampling theorems and the numerical techniques for the calculation of diffraction, the formation of images and analysis of the quality of optical systems, the theory of coherence and some of its applications, spatial filtering and finally diffraction gratings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical references

  1. Abbe E.K., Beitrage zür theorie des mikroskops und der mikroskopischen wahrnehmung, Archiv. Microskopische Anat. 9, 413-468 (1873).

    Article  Google Scholar 

  2. Abramowitz M. and Stegun I.A., Handbook of Mathematical Functions, Dover Publications Inc., New York (1972).

    Google Scholar 

  3. Arecchi F.T., Measurement of the Statistical Distribution of Gaussian and Laser Sources, Phys. Rev. Lett. 15, 912–916 (1965). An introduction to quantum optics, in “Interaction of Radiation with Condensed Matter”, Vol. I, International Atomic Energy Agency, Vienna (1977).

    Google Scholar 

  4. Arecchi F.T., Courtens E., Gilmore R., Thomas H., Atomic Coherent States in Quantum Optics, Phys. Rev. A 6, 2211–2237 (1972).

    Article  ADS  Google Scholar 

  5. Arecchi F.T., Schultz E.O., Du Bois, ed., Laser Handbook, Part A, North Holland (1972).

    Google Scholar 

  6. Barrett H.H. and Myers K.J., Foundations of Image Science, John Wiley & Sons Inc. ed.,New York (2004).

    Google Scholar 

  7. Born M. and Wolf E., Principles of Optics, Pergamon Press, Paris (1980).

    Google Scholar 

  8. Cicogna G., Appunti di Metodi Matematici della Fisica, Università degli Studi di Pisa (1969).

    Google Scholar 

  9. Cooley J.W. and Tukey J.W., An algorithm for the machine computation of Fourier series, Maths. of Comput. 19, 297-301 (1965).

    Google Scholar 

  10. Czerny M. and Turner F., Über den astigmatismus by spiegelspectrometern, Z, Physik 61, 792-797 (1930).

    Google Scholar 

  11. den Dekker A.J. and van den Bos A., Resolution: a survey, J. Opt. Soc. Am. 14, 547-557 (1997).

    Google Scholar 

  12. de Wiveleslie Abney W., On the photographic method of mapping the long wavelength end of the spectrum, Phil. Trans. Royal Soc. 171, II, 653-667 (1880).

    Google Scholar 

  13. Duffieux P.M., L’Intégrale de Fourier et ses applications à l’optique, Faculté des Sciences, Besançon, 1946. Reprinted by Masson et Cie, Paris (1970) and by Wiley, New York (1983).

    Google Scholar 

  14. Elias P., Optics and communication theory, J. Opt. Soc. Am. 43, 229-232 (1953).

    Article  ADS  Google Scholar 

  15. Fastie W., Ebert spectrometer reflections, Physics Today 44, 37-43 (1991).

    Article  ADS  Google Scholar 

  16. Fellgett P., Concerning photographic grain, signal-to-noise ratio, and information, J. Opt. Soc. Am. 43, 271-281 (1953).

    Article  ADS  Google Scholar 

  17. Glauber R.J., Coherent and incoherent states of the radiation field, Phys. Rev. 131, 2766-2788 (1963). In “Quantum Optics and Electronics”, Les Houches Summer School of Theoretical Physics, University of Grenoble, C. DeWitt, A. Blandin and C. Cohen-Tannoudji, Eds., Gordon and Breach, New York (1965).

    Google Scholar 

  18. Goldstein D.J., Understanding the light microscope, Academic Press, London (1999).

    Google Scholar 

  19. Goodman J.W., Introduction to Fourier Optics, II ed., McGraw-Hill, San Francisco (1996).

    Google Scholar 

  20. Gu M., Advanced Optical Imaging Theory, Springer-Verlag, Berlin (2000).

    Google Scholar 

  21. Hanbury Brown R. and Twiss R.Q., A new type of interferometer for use in radio astronomy, Phil. Mag. 45, 663-682 (1954). Interferometry of the Intensity Fluctuations in Light. I. Basic Theory: The Correlation between Photons in Coherent Beams of Radiation, Proc. R. Soc. A242, 300-324 (1957). Interferometry of the Intensity Fluctuations in Light II. An Experimental Test of the Theory for Partially Coherent Light, Proc. R. Soc. A243, 291-319 (1958).

    Google Scholar 

  22. Hopkins H.H., On the Diffraction Theory of Optical Images, Proc. R. Soc. A217, 408-432 (1953). The frequency response of optical systems, Proc. Phys. Soc. (London) Ser. B 69, 562-576 (1956).

    Google Scholar 

  23. Hopkins H.H. and Baraham P.M., The Influence of the Condenser on Microscopic Resolution, Proc. Phys. Soc. B 63, 737-744 (1950).

    Article  ADS  Google Scholar 

  24. Kasdin N.J., Vanderbei R.J., Littman M.G., and Spergel D.N., Optimal one-dimensional apodizations and shaped pupils for planet finding coronagraphy, Appl. Optics 44, 1117-1128 (2005).

    Article  ADS  Google Scholar 

  25. Köhler A., Ein neues Beleuchtungsverfahren für mikrophotographische Zwecke, Zeits. f. wiss. Mikroskopie 10, 433-440 (1893); Beleuchtungsapparat für gleichmässige Beleuchtung mikroskopischer Objecte mit beliebigem, einfarbigem Licht, Zeits. f. wiss. Mikroskopie 16, 1-29 (1899).

    Google Scholar 

  26. Loewen E.G. and Popov E., Diffraction Gratings and Applications, Marcel Dekker, Inc., New York (1997).

    Google Scholar 

  27. Mandel L. and Wolf E., Coherence properties of optical fields, Rev. Mod. Phys. 37, 231-287 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  28. Mansuripur M., Certain computational aspects of vector diffraction problems, J. Opt. Soc. Am. A 6, 786-805 (1989). Classical Optics and its Applications, Cambridge Univ. Press, Cambridge (2002).

    Google Scholar 

  29. Maréchal A. and Croce P., Un filtre de frequencies spatiales pour l’amelioration du contraste des images optiques, C.R. Acad. Sci. 127, 607-609 (1953).

    Google Scholar 

  30. O’Neill E.L., Spatial filtering in optics, IRE Trans. Inf. Theory IT-2, 56-65 (1956).

    Article  Google Scholar 

  31. Oran Brigham E., The fast Fourier Transform, Prentice-Hall, Inc., Englewood Cliffs, N.J. (1974).

    Google Scholar 

  32. Papoulis A., System and Transforms with Applications in Optics, McGraw-Hill, New York (1968).

    Google Scholar 

  33. Porter A.B., On the diffraction theory of microscope vision, Phil. Mag. 11, 154-166 (1906).

    Google Scholar 

  34. Rayleigh (Lord), On the manufacture and theory of diffraction gratings, Phil. Mag. Series 4, 47, 193-205 (1874). Investigation in optics, with special reference to the spectroscope, Philos. Mag. 8, 261-274, 403-411, 477-486 (1879), Philos. Mag. 9, 40-55 (1880).

    Google Scholar 

  35. Reynolds G.O., DeVelis J.B., Parrent G.B. Jr, Thompson B.J., The new Physical Optics Notebook: Tutorial in Fourier Optics, SPIE Optical Engineering Press, Bellingam, and American Institute of Physics, New York (1989).

    Google Scholar 

  36. Ronchi V., at the entry aberrazione, Enciclopedia della Scienza e della Tecnica, Mondadori ed., Milano (1963).

    Google Scholar 

  37. Schuster A., The periodogram and its optical analogy, Proc. Roy. Soc. 77, 136-140 (1906).

    Google Scholar 

  38. Shade O.H., Electro-optical characteristics of television systems, R. C. A. Rev. 9, 5-37, 245, 490, 653 (1948).

    Google Scholar 

  39. Shafer A., Megil L., and Droppelman L., Optimization of Czerny-Turner spectrometers, J. Opt. Soc. Am. 54, 879-888 (1964).

    Article  ADS  Google Scholar 

  40. Shamir J., Optical Systems and Processes, SPIE Optical Engineering Press, Bellingam (1999).

    Google Scholar 

  41. Shannon C.E., Communication in presence of Noise, Proc. IRE 37, 10-21 (1949).

    Article  MathSciNet  Google Scholar 

  42. Sivoukhine D., Optique, MIR, Mosca (1984).

    Google Scholar 

  43. Sparrow C.M., On spectroscopic resolving power, Astrophys. J. 44, 76-86 (1916).

    Google Scholar 

  44. Stamnes J.J., Waves in Focal Regions, A. Hilger, Bristol (1986).

    Google Scholar 

  45. Talbot H. F., Facts relating to optical science. No. IV, Philos. Mag. 9, 401-407 (1836).

    Google Scholar 

  46. Tervo J., Setälä T., Friberg A.T., Theory of partially coherent electromagnetic fields in space-frequency domain, J. Opt. Soc. Am. A 21, 2205-2215 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  47. Thompson B.J. and Wolf E., Two-beam interference with partially coherent light, J. Opt. Soc. Am. 47, 895-902 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  48. Toraldo di Francia G., The capacity of optical channels in the presence of noise, Opt. Acta 2, 5-8 (1955).

    Google Scholar 

  49. Traub W.A. and Vanderbei R.J., Two-mirror apodization for high-contrast imaging, The Astrophysical J. 599, 695-701 (2003).

    Article  ADS  Google Scholar 

  50. van Cittert P.H., Die Wahrscheinliche Schwingungsverteilung in Einer von Einer Lichtquelle Direkt Oder Mittels Einer Linse Beleuchteten Ebene, Physica 1, 201-210 (1934). Kohaerenz-probleme, Physica 6, 1129-1138 (1939).

    Google Scholar 

  51. VanderLugt A., Signal detection by complex spatial filtering, IEEE Trans. Inf. Theory, IT-10, 139-145 (1964). Optical Signal Processing, John Wiley & Sons Inc. ed., New York (1992).

    Google Scholar 

  52. Van Vlek J.H. and Middleton D., A theoretical comparison of the visual, aural, and meter reception of pulsed signals in the presence of noise, J. Appl. Phys. 17, 940-971 (1946).

    Google Scholar 

  53. Walther A., Radiometry and coherence, J. Opt. Soc. Am. 58, 1256-1259 (1968).

    Article  ADS  Google Scholar 

  54. Wiener N., Generalized harmonic analysis, Acta Math. 55, 117-258 (1930). Optics and the theory of stochastic processes, J. Opt. Soc. Am. 43, 225-228 (1953).

    Google Scholar 

  55. Williams C.S., Becklund O.A., Introduction to the Optical Transfer Function, John Wiley & Sons ed., New York (1989).

    Google Scholar 

  56. Wilson R.G., Fourier Series and Optical Transform Techniques in Contemporary Optics. An introduction, John Wiley & Sons ed., New York (1995).

    Google Scholar 

  57. Weyl H., Ausbrietung elektromagnetischer Wellen über einem ebenen Leiter, Ann.Phys. Lpz. 60, 481-500 (1919).

    Article  ADS  Google Scholar 

  58. Whittaker E.T., On the functions which are represented by the expansions of the interpolation theory, Proc. Roy. Soc. Edinburgh, Sec. A 35, 181-194 (1915).

    Google Scholar 

  59. Wolf E., A Macroscopic Theory of Interference and Diffraction of Light from Finite Sources. II. Fields with a Spectral Range of Arbitrary Width, Proc. Roy. Soc. A230, 246-265 (1955). Intensity fluctuations in stationary optical fields, Phil. Mag. 2, 351-354 (1957).

    Google Scholar 

  60. Zadeh L.A. and Ragazzini J.R., Optimal filters for the detection of signal in noise, Proc. IRE 40, 1223-1231 (1952).

    Article  Google Scholar 

  61. Yu Francis T.S., Entropy and Information Optics, Marcel Dekker Inc. ed., New York (2000).

    Google Scholar 

  62. Zernike F., Das phasenkontrastverfahren bei der mikroskopischen beobachtung, Z. Thec. Phys. 16, 454-457 (1935). The concept of degree of coherence and its application to optical problems, Physica 5, 785-795 (1938).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Giusfredi .

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giusfredi, G. (2019). Fourier’s Optics. In: Physical Optics. UNITEXT for Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-25279-3_5

Download citation

Publish with us

Policies and ethics