Skip to main content

Abstract

Wide bandgap semiconductors (WBGS) were initially proposed for high voltage switching devices, and now they are commercially available. However, WBGS materials also offer operation in extreme environments, including temperatures higher than silicon could operate at (300 °C or more) as well as withstanding ten times higher radiation doses. Integrated circuit (IC) technologies have been developed in silicon carbide (SiC) and gallium nitride (GaN). Several power management ICs have been demonstrated to work in the temperature range from room temperature to 500 °C, including switch drivers, linear voltage regulators, and operational amplifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.J. Pearton, F. Ren, M. Tadjer, J. Kim, Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS. J. Appl. Phys. 124, 220901 (2018)

    Article  Google Scholar 

  2. J.Y. Tsao et al., Ultrawide-bandgap semiconductors: research opportunities and challenges. Adv Electron. Mater. 4(1), 1600501 (2018)

    Article  Google Scholar 

  3. T. Kimoto, J.A. Cooper, Fundamentals of Silicon Carbide Technology (Wiley, Singapore, 2014)

    Book  Google Scholar 

  4. S.S. Suvanam, L. Lanni, B.G. Malm, C.-M. Zetterling, A. Hallén, Effects of 3 MeV protons on 4H-SiC bipolar devices and integrated OR-NOR gate. IEEE Trans. Nucl. Sci. 61, 1772–1776 (2014)

    Article  Google Scholar 

  5. S.S. Suvanam, S.I. Kuroki, L. Lanni, R. Hedayati, T. Ohshima, T. Makino, A. Hallén, C.-M. Zetterling, High gamma ray tolerance for 4H-SiC bipolar circuits. IEEE Trans. Nucl. Sci. 64, 852–858 (2017)

    Article  Google Scholar 

  6. A. Akturk, J. McGarrity, N. Goldsman, D.J. Lichtenwalner, B. Hull, D. Grider, R. Wilkins, The effects of radiation on the terrestrial operation of SiC MOSFETs, in 2018 IEEE International Reliability Physics Symposium (IRPS), (IEEE, Piscataway, 2018)

    Google Scholar 

  7. C.F. Wilson, C.-M. Zetterling, W.T. Pike, Venus Long-life Surface Package, arXiv:1611.03365, (2016)

    Google Scholar 

  8. P.G. Neudeck, D.J. Spry, L. Chen, N.F. Prokop, M.J. Krasowski, Demonstration of 4H-SiC digital integrated circuits above 800 °C. IEEE Electron Device Lett. 38(8), 1082–1085 (2017)

    Article  Google Scholar 

  9. P.G. Neudeck, et al., Operational testing of 4H-SiC JFET ICs for 60 days directly exposed to venus surface atmospheric conditions in IEEE Journal of the Electron Devices Society, (IEEE, New York, 2018)

    Google Scholar 

  10. C.-M. Zetterling, Integrated circuits in silicon carbide for high-temperature applications. MRS Bull. 40, 431–438 (2015)

    Article  Google Scholar 

  11. L. Lanni, B. Malm, M. Östling, C.-M. Zetterling, 500°C bipolar integrated OR/NOR gate in 4H-SiC. Electron Device Lett. IEEE 34(9), 1091–1093 (2013)

    Article  Google Scholar 

  12. A.L.S. Loke et al., Analog/mixed-signal design in FinFET technologies, in Hybrid ADCs, Smart Sensors for the IoT, and Sub-1V & Advanced Node Analog Circuit Design, ed. by P. Harpe, K. Makinwa, A. Baschirotto, (Springer, Cham, 2018), pp. 259–280

    Chapter  Google Scholar 

  13. M. Ekström et al., Low temperature Ni-Al ohmic contacts to p-type 4H-SiC using semi-salicide processing, in ICSCRM 2017, Materials Science Forum, vol. 924, (Trans Tech Publication, Uetikon, 2018), pp. 389–392

    Google Scholar 

  14. H. Elahipanah et al., A wafer-scale Ni-salicide contact technology on n-type 4H-SiC. J. Solid State Sci. Technol. 6, 197–200 (2017)

    Article  Google Scholar 

  15. A. Salemi et al., 15 kV-class implantation-free 4H-SiC BJTs with record high current gain. IEEE Electron Device Lett. 39, 63 (2018)

    Article  Google Scholar 

  16. K.J. Chen, O. Häberlen, A. Lidow, C.l. Tsai, T. Ueda, Y. Uemoto, Y. Wu, Gan-on-si power technology: Devices and applications. IEEE Trans. Electron Devices 64(3), 779–795 (2017)

    Article  Google Scholar 

  17. D. Clark, E.P. Ramsay, A. Murphy, D.A. Smith, R. Thompson, R. Young, J.D. Cormack, S. Finney, et al., High temperature digital and analogue integrated circuits in silicon carbide, in Materials Science Forum, vol. 740, (Trans Tech Publication, Uetikon, 2013), pp. 1065–1068

    Google Scholar 

  18. J. Valle-Mayorga, A. Rahman, H. Mantooth, A SiC NMOS linear voltage regulator for high-temperature applications. IEEE Trans. Power Electron. 29(5), 2321–2328 (2014)

    Article  Google Scholar 

  19. J. Mogniotte, D. Tournier, C. Raynaud, M. Lazar, D. Planson, B. Allard, Silicon carbide technology of MESFET-based power integrated circuits. IEEE J. Emerg. Sel. Top Power Electron 6(2), 539–548 (2018)

    Article  Google Scholar 

  20. A.J. Suria, A.S. Yalamarthy, H. So, D.G. Senesky, DC characteristics of ALD-grown Al2O3/AlGaN/GaN MIS-HEMTs and HEMTs at 600 °C in air. Semicond. Sci. Technol. 31(11), 115017 (2016)

    Article  Google Scholar 

  21. A.M.H. Kwan, X. Liu, K.J. Chen, Integrated gate-protected HEMTs and mixed-signal functional blocks for GaN smart power ICs, in 2012 International Electron Devices Meeting, (IEEE, Piscataway, 2012), pp. 7.3.1–7.3.4

    Google Scholar 

  22. Y. Tian et al., SiC BJT compact DC model with continuous- temperature scalability from 300 to 773 K. IEEE Trans. Electron Dev. 64, 3588–3594 (2017)

    Article  Google Scholar 

  23. R. Hedayati, L. Lanni, S. Rodriguez, B.G. Malm, A. Rusu, C.-M. Zetterling, A monolithic, 500°C operational amplifier in 4H-SiC bipolar technology. IEEE Electron Device Lett. 35, 693–695 (2014)

    Article  Google Scholar 

  24. S. Kargarrazi, L. Lanni, And C. M. Zetterling, “A study on positive -feedback configuration of a bipolar SiC high temperature operational amplifier,” Solid State Electron., Vol. 116, 2016, pp. 33–37

    Article  Google Scholar 

  25. M. Shakir, S. Hou, B.G. Malm, M. Östling, C.-M. Zetterling, A 600°C TTL-based 11-stage ring oscillator in bipolar silicon carbide technology. IEEE Electron Device Letters 39(10), 1540–1543 (2018)

    Google Scholar 

  26. S. Kargarrazi, H. Elahipanah, S. Rodriguez, C.-M. Zetterling, 500°C, high current linear voltage regulator in 4H-SiC BJT technology. IEEE Electron Device Letters 39(4), 548–551 (2018)

    Article  Google Scholar 

  27. M. Barlow, S. Ahmed, H.A. Mantooth, A.M. Francis, An integrated SiC CMOS gate driver, in 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), (IEEE, Piscataway, 2016), pp. 1646–1649

    Chapter  Google Scholar 

  28. S. Kargarrazi, L. Lanni, A. Rusu, C.M. Zetterling, A monolithic SiC drive circuit for SiC power BJTs, in 2015 IEEE 27th International Symposium on Power Semiconductor Devices IC’s (ISPSD), (IEEE, Piscataway, 2015), pp. 285–288

    Chapter  Google Scholar 

  29. B. Wicht, J. Wittmann, A. Seidel, A. Schindler, High-voltage fast-switching gate drivers, in Wideband Continuous-Time ΣΔ ADCs, Automotive Electronics, and Power Management, ed. by A. Baschirotto, P. Harpe, K. Makinwa, (Springer, Cham, 2017), pp. 155–176

    Chapter  Google Scholar 

  30. H. Elahipanah, S. Kargarrazi, A. Salemi, M. Östling, C.M. Zetterling, 500°C high current 4H-SiC lateral BJTs for high-temperature integrated circuits. IEEE Electron Device Lett. 38, 1429 (2017)

    Article  Google Scholar 

  31. J. Rabkowski, D. Peftitsis, H.-P. Nee, Design steps towards a 40-kVA SiC inverter with an efficiency exceeding 99.5%, in IEEE Applied Power Electronics Conf. and Exposition (APEC), (IEEE, Piscataway, 2012), pp. 1536–1543

    Google Scholar 

  32. S. Kargarrazi, H. Elahipanah, S. Saggini, D. Senesky, C.-M. Zetterling, 500°C SiC PWM integrated circuit. IEEE Trans. Power Electron. 34(3), 1997–2001 (2019)

    Article  Google Scholar 

  33. H. Wang, A.M.H. Kwan, Q. Jiang, K.J. Chen, A GaN pulse width modulation integrated circuit for gan power converters. IEEE Trans. Electron Devices 62(4), 1143–1149 (2015)

    Article  Google Scholar 

  34. A. Rahman, L. Caley, S. Roy, S. Kuhns, A. Mantooth, J. Di, A.M. Francis, J. Holmes, High temperature data converters in silicon carbide CMOS. IEEE Trans. Electron Devices 64, 1426–1432 (2017)

    Article  Google Scholar 

  35. R. Hedayati, L. Lanni, B.G. Malm, A. Rusu, C.-M. Zetterling, A 500°C 8-bit digital-to-analog converter in silicon carbide bipolar technology. IEEE Trans Electron Dev. 63, 3445–3450 (2016)

    Article  Google Scholar 

  36. R. Hedayati, L. Lanni, A. Rusu, C.-M. Zetterling, Wide temperature range integrated bandgap voltage references in 4H–SiC. IEEE Electron Device Lett. 37, 146–149 (2016)

    Article  Google Scholar 

  37. S. Hou, P.-E. Hellström, C.-M. Zetterling, M. Östling, A 4H-SiC BJT as a switch for on-chip integrated uv photodiode. IEEE Electron Device Lett. 40(1), 51–54 (2019)

    Article  Google Scholar 

  38. M.W. Hussain, H. Elahipanah, J.E. Zumbro, S. Schröder, S. Rodriguez, B.G. Malm, H.A. Mantooth, A. Rusu, A 500°C active down-conversion mixer in silicon carbide bipolar technology. IEEE Electron Device Lett. 39(6), 855–858 (2018)

    Article  Google Scholar 

  39. M. Shakir, S. Hou, B.G. Malm, M. Östling, C.-M. Zetterling, Towards silicon carbide based VLSI circuits for extreme environment applications. MDPI J. Electron. 8(5), 496 (2019)

    Google Scholar 

  40. C.-M. Zetterling et al., Bipolar integrated circuits in SiC for extreme environment operation. Semicond. Sci. Technol. 32, 034002 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl-Mikael Zetterling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zetterling, CM., Kargarrazi, S., Shakir, M. (2020). Wide Bandgap Integrated Circuits for High Power Management in Extreme Environments. In: Baschirotto, A., Harpe, P., Makinwa, K. (eds) Next-Generation ADCs, High-Performance Power Management, and Technology Considerations for Advanced Integrated Circuits. Springer, Cham. https://doi.org/10.1007/978-3-030-25267-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25267-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25266-3

  • Online ISBN: 978-3-030-25267-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics