Scrutinizing Conventional and Eddy-Resolving Unsteady RANS Approaches in Computing the Flow and Aeroacoustics Past a Tandem Cylinder

  • Felix KöhlerEmail author
  • Robert Maduta
  • Benjamin Krumbein
  • Suad Jakirlić
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 142)


A conventional differential, near-wall Reynolds stress model (RSM) [2] and its eddy-resolving version, sensitized appropriately to account for turbulence unsteadiness (denoted as instability-sensitive RSM - IS-RSM [3]), are applied within the Unsteady RANS computational framework to the flow past an in-line tandem-cylinder arrangement. The scale-supplying equation governing the homogeneous part of the inverse turbulent time scale \(\omega _h\) (\(\omega _h = \varepsilon _h/k)\), both model schemes are based on, includes an additional production term in the IS-RSM formulation. This model term, originating from Menter and Egorov’s Scale-Adaptive Simulation (SAS) concept [11], enables the model’s eddy-resolving capability. The complex unsteady vortex shedding process featuring the tandem cylinder flow at the Reynolds number of \({1.66 \times 10^{5}}\) and cylinder in-between spacing of 3.7D is correctly, qualitatively and quantitatively, captured by the present IS-RSM model, in contrast to the conventional URANS approach. The superiority of the IS-RSM model is reflected furthermore in predicting the acoustic pressure by applying an indirect approach in line with Curle’s acoustic analogy [1].


Unsteady RANS Reynolds-stress model Eddy-resolving RANS Tandem cylinder Aeroacoustics Curle’s analogy 


  1. 1.
    Curle, N.: The influence of solid boundaries upon aerodynamic sound. Proc. R. Soc. Lond. A 231(1187), 505–514 (1955)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Jakirlić, S., Hanjalić, K.: A new approach to modelling near-wall turbulence energy and stress dissipation. J. Fluid Mech. 459, 139–166 (2002)CrossRefGoogle Scholar
  3. 3.
    Jakirlić, S., Maduta, R.: Extending the bounds of steady RANS closures: toward an instability-sensitive Reynolds stress model. Int. J. Heat Fluid Flow 51, 75–194 (2015)CrossRefGoogle Scholar
  4. 4.
    Jenkins, L., Neuhart, D.M., McGinley, C., Choudhari, M.M., Khorrami, R.M.: Measurements of unsteady wake interference between tandem cylinders. AIAA Paper 2006-3202 (2006)Google Scholar
  5. 5.
    Kato, C., Iida, A., Takano, Y., Fujita, H., Ikegawa, M.: Numerical prediction of aerodynamic noise radiated from low Mach number turbulent wake. AIAA Paper 93-0145 (1993)Google Scholar
  6. 6.
    Larsson, J., Davidson, L., Olsson, M., Eriksson, L.E.: Aeroacoustic investigation of an open cavity at low Mach number. AIAA J. 42(12), 2462–2473 (2004)CrossRefGoogle Scholar
  7. 7.
    Lighthill, M.J.: On sound generated aerodynamically I. General theory. Proc. R. Soc. Lond. A 211(1107), 564–587 (1952)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lockard, D.P., Khorrami, M.R., Choudhari, M.M., Hutcheson, F.V., Brooks, T.F.: Tandem cylinder noise predictions. AIAA Paper 2007-3450 (2007)Google Scholar
  9. 9.
    Maduta, R., Jakirlic, S., Ullrich, M.: A numerically upgraded instability-sensitized Reynolds stress model for complex turbulent flow applications. ICHMT Digital Library Online. Begel House Inc. (2015)Google Scholar
  10. 10.
    Maduta, R., Ullrich, M., Jakirlic, S.: Reynolds stress modelling of wake interference of two cylinders in tandem: conventional vs. Eddy-resolving closure. Int. J. Heat Fluid Flow 67(B), 139–148 (2017)CrossRefGoogle Scholar
  11. 11.
    Menter, F.R., Egorov, Y.: The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description. Flow Turbul. Combust. 85(1), 113–138 (2010)CrossRefGoogle Scholar
  12. 12.
    Neuhart, D.H., Jenkins, L.N., Choudhari, M.M., Khorrami, M.R.: Measurements of the flowfield interaction between tandem cylinders. AIAA Paper 2009-3275 (2009)Google Scholar
  13. 13.
    Rotta, J.C.: Turbulente Strömungen. Teubner Verlag, Stuttgart (1972)CrossRefGoogle Scholar
  14. 14.
    Welch, P.: The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967)CrossRefGoogle Scholar
  15. 15.
    Zdravkovich, M.M.: Flow Around Circular Cylinders, Vol 1: Fundamentals, vol. 19, p. 185. Oxford University Press, Oxford (1997)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Felix Köhler
    • 1
    • 2
    Email author
  • Robert Maduta
    • 1
    • 3
  • Benjamin Krumbein
    • 1
  • Suad Jakirlić
    • 1
  1. 1.Institute of Fluid Mechanics and Aerodynamics (SLA)Technische Universität DarmstadtDarmstadtGermany
  2. 2.Institute of Numerical Methods in Mechanical Engineering (FNB)Technische Universität DarmstadtDarmstadtGermany
  3. 3.Outotec GmbH Co & KGOberurselGermany

Personalised recommendations