Skip to main content

Investigations on a Mechanism to Induce Free-Stream Turbulence in a Water Channel by Controlled Injection of Air Bubbles

  • Conference paper
  • First Online:
New Results in Numerical and Experimental Fluid Mechanics XII (DGLR 2018)

Abstract

In this paper we investigate a new approach to influence the free-stream turbulence (FST) in a water channel. The mechanism induces air bubbles into the mean flow, which naturally rise to the water surface. The air bubbles and their wakes are capable of increasing the low turbulence intensity in the facility’s test section by more than one order of magnitude. It is possible to control the FST by varying the air pressure of the generator. The resulting turbulence intensity increases rapidly for the lowest setting and shows an asymptotic behaviour for higher working pressures. By installing an additional flow control screen we are capable of reducing the overall turbulence intensities and hence increasing the controllability of the FST. Besides the analysis of the flow-field with hot-film sensors, we are able to show streaky structures in the laminar boundary-layer on a flat plate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fransson, J.H.M., Matsubara, M., Alfredsson, P.H.: Transition induced by free-stream turbulence. J. Fluid Mech. 527, 1–25 (2005)

    Article  Google Scholar 

  2. Hideharu, M.: Realization of a large-scale turbulence field in a small wind tunnel. Fluid Dyn. Res. 8(1–4), 53–64 (1991)

    Article  Google Scholar 

  3. Hurst, D., Vassilicos, J.C.: Scalings and decay of fractal-generated turbulence. Phys. Fluids 19(3), 035103 (2007)

    Article  Google Scholar 

  4. Kurian, T., Fransson, J.H.M.: Grid-generated turbulence revisited. Fluid Dyn. Res. 41(2), 021403 (2009)

    Article  Google Scholar 

  5. Lavoie, P., Djenidi, L., Antonia, R.A.: Effects of initial conditions in decaying turbulence generated by passive grids. J. Fluid Mech. 585, 395–420 (2007)

    Article  Google Scholar 

  6. Ling, S.C., Wan, C.A.: Decay of isotropic turbulence generated by a mechanically agitated grid. Phys. Fluids 15(8), 1363–1369 (1972)

    Article  Google Scholar 

  7. Mathieu, J., Alcaraz, E.: Réalisation dune soufflerie à haut niveau de turbulence. C. R. Seances Acad. Sci. 261(13), 2435 (1965)

    Google Scholar 

  8. Matsubara, M., Alfredsson, P.H.: Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149–168 (2011)

    Article  Google Scholar 

  9. Puckert, D.: Experimental investigation on global instability and critical Reynolds number in roughness-induced laminar-to-turbulent transition. Dissertation, University of Stuttgart (2019)

    Google Scholar 

  10. Puckert, D.K., Dieterle, M., Rist, U.: Reduction of freestream turbulence at low velocities. Exp. Fluids 58(5), 45 (2017)

    Article  Google Scholar 

  11. Puckert, D.K., Rist, U.: Experiments on critical Reynolds number and global instability in roughness-induced laminar-turbulent transition. J. Fluid Mech. 844, 878–903 (2018)

    Article  Google Scholar 

  12. Saffman, P.G.: On the rise of small air bubbles in water. J. Fluid Mech. 1(3), 249–275 (1956)

    Article  Google Scholar 

  13. Saric, W.S., Reed, H.L., Kerschen, E.J.: Boundary-layer receptivity to freestream disturbances. Annu. Rev. Fluid Mech. 34(1), 291–319 (2002)

    Article  MathSciNet  Google Scholar 

  14. Simmons, L.F.G., Salter, M.A.: Experimental investigation and analysis of the velocity variations in turbulent flow. Proc. R. Soc. Lond. A 145(854), 212–234 (1934)

    Article  Google Scholar 

  15. Siring, M.: Aufbau und experimentelle Untersuchung eines Turbulenzgenerators zur Beeinflussung der Freistromturbuluenz im Laminarwasserkanal. Ms. thesis, University of Stuttgart (2018)

    Google Scholar 

  16. Subasi, A., Puckert, D., Gunes, H., Rist, U.: Calibration of constant temperature anemometry with hot-film probes for low speed laminar water channel flows. In: 13th International Symposium on Fluid Control, Measurement and Visualization, Flucome, Doha, Qatar (2015)

    Google Scholar 

  17. Thole, K.A., Bogard, D.G., Whan-Tong, J.L.: Generating high freestream turbulence levels. Exp. Fluids 17(6), 375–380 (1994)

    Article  Google Scholar 

  18. Wiegand, T.: Experimentelle Untersuchungen zum laminar-turbulenten Transitionsprozess eines Wellenzugs in einer Plattengrenzschicht. Dissertation Universität Stuttgart (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Siring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siring, M., Puckert, D.K., Rist, U. (2020). Investigations on a Mechanism to Induce Free-Stream Turbulence in a Water Channel by Controlled Injection of Air Bubbles. In: Dillmann, A., Heller, G., Krämer, E., Wagner, C., Tropea, C., Jakirlić, S. (eds) New Results in Numerical and Experimental Fluid Mechanics XII. DGLR 2018. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 142. Springer, Cham. https://doi.org/10.1007/978-3-030-25253-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25253-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25252-6

  • Online ISBN: 978-3-030-25253-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics