Skip to main content

Influence of Jet Spacing and Injection Pressure on Separation Control with Air-Jet Vortex Generators

  • Conference paper
  • First Online:
New Results in Numerical and Experimental Fluid Mechanics XII (DGLR 2018)

Abstract

Shock-induced separation is a common phenomenon in aero-space transportation applications which can result in strong detrimental effects. A promising method of passive control to mitigate this effect is the application of air-jet vortex generators (AJVGs). In the present study, we focus on the influence of jet spacing and the injection pressure in an AJVG array on the control efficiency of a \(24^\circ \) compression ramp induced shock-wave/boundary-layer interaction. Experiments were conducted at Mach 2.5 and oil-flow and focusing schlieren visualization were used to analyse the interaction region. The results indicate an appreciable amount of interaction between the jets produced the best control efficiency while a reduction in control efficiency was observed for both very strong and very weak interactions between the AJVG induced vortices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delery, J., Marvin, J.: Shock-Wave Boundary Layer Interactions. AGARDograph 280. Brussels, NATO (1986)

    Google Scholar 

  2. Andreopoulos, Y., Agui, J.H., Briassulis, G.: Shock wave-turbulence interactions. Annu. Rev. Fluid Mech. 32(1), 309–345 (1996)

    Article  MathSciNet  Google Scholar 

  3. Smits, A.J., Dussauge, J.P.: Turbulent Shear Layers in Supersonic Flow. Springer, New York (2006)

    Google Scholar 

  4. Babinsky, H., Harvey, J.K.: Shock-Wave Boundary Layer Interactions. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  5. Clemens, N.T., Narayanaswamy, V.: Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu. Rev. Fluid Mech. 46(1), 469–492 (2014)

    Article  MathSciNet  Google Scholar 

  6. Delery, J.M.: Shock wave/turbulent boundary layer interaction and its control. Prog. Aerosp. Sci. 22(4), 209–280 (1985)

    Article  Google Scholar 

  7. Pearcey, H.H.: Part IV: shock-induced separation and its prevention by design and boundary layer control. In: Lachmann, G.V. (ed.) Boundary Layer and Flow Control: Its Principles and Application, vol. 2, pp. 1166–1344. Pergamon, Oxford (1961)

    Chapter  Google Scholar 

  8. Holden, H.A., Babinsky, H.: Effect of microvortex generators on separated normal shock/boundary layer interactions. J. Aircr. 44(1), 170–174 (2007)

    Article  Google Scholar 

  9. Babinsky, H., Ogawa, H.: SBLI control for wings and inlets. Shock Waves 18(2), 89–96 (2008)

    Article  Google Scholar 

  10. Blinde, P.L., Humble, R.A., van Oudheusden, B.W., Scarano, F.: Effects of micro-ramps on a shock wave/turbulent boundary layer interaction. Shock Waves 19(6), 507–520 (2009)

    Article  Google Scholar 

  11. Wallis, R.A.: The use of air jets for boundary layer control. Aero. Note 110, Aeronautical Research Laboratories (1952)

    Google Scholar 

  12. Wallis, R.A., Stuart, C.M.: On the control of shock-induced boundary layer separation with discrete air jets. Aeronautical Research Council, p. 595 (1958)

    Google Scholar 

  13. Johnston, J.P., Nishi, M.: Vortex generator jets - means for flow separation control. AIAA J. 28(6), 989–994 (1990)

    Article  Google Scholar 

  14. Pearcey, H. H., Rao, K., Sykes, D. M.: Inclined air-jets used as vortex generators to suppress shock-induced separation. In : AGARD-CP-534, Computational and Experimental Assessment of Jets in Cross Flow, pp. 40.1–40.10 (1993)

    Google Scholar 

  15. Peake, D., Henry, F., Pearcey, H.: Viscous flow control with air-jet vortex generators. In: 17th Applied Aerodynamics Conference, Norflok, VA, USA (1999)

    Google Scholar 

  16. Guntermann, P.: Entwicklung eines Profilmodells mit variable Geometri zur Untersuchung des Transitionsverhaltens in kompressibler Unterschallströmung. Ph.D. thesis, RWTH Aachen University (1992)

    Google Scholar 

  17. Schauerte, C., Schreyer, A.-M.: Design of a high-speed focusing schlieren system for complex three-dimensional flows. In: 5th International Conference on Experimental Fluid Mechanics (ICEFM), Munich, Germany (2018)

    Google Scholar 

  18. Souverein, L.J., Debiève, J.-F.: Effect of air jet vortex generators on a shock wave boundary layer interaction. Exp. Fluids 49(5), 1053–1064 (2010)

    Article  Google Scholar 

  19. Ali, M.Y., Alvi, F.S., Kumar, R., Manisankar, C., Verma, S.B., Venkatakrishnan, L.: Studies on the influence of steady microactuators on shock-wave/boundary-layer interaction. AIAA J. 51(12), 2753–2762 (2013)

    Article  Google Scholar 

  20. Schreyer, A.-M., Sahoo, D., Smits, A.: Experiments on the Influence of a microramp array on a hypersonic shock turbulent boundary layer interaction. In: 41st AIAA Fluid Dynamics Conference, Honolulu, Hawaii, USA (2011)

    Google Scholar 

  21. Kumar, R., Ali, M.Y., Alvi, F.S., Venkatakrishnan, L.: Generation and control of oblique shocks using microjets. AIAA J. 49(12), 2751–2759 (2011)

    Article  Google Scholar 

  22. Szwaba, R.: Comparison of the influence of different air-jet vortex generators on the separation region. Aerosp. Sci. Technol. 15(1), 45–52 (2011)

    Article  Google Scholar 

  23. Szwaba, R.: Influence of air-jet vortex generator diameter on separation region. J. Therm. Sci. 22(4), 294–303 (2013)

    Article  Google Scholar 

  24. Verma, S.B., Manisankar, C.: Shockwave/boundary-layer interaction control on a compression ramp using steady micro jets. AIAA J. 50(12), 2753–2764 (2012)

    Article  Google Scholar 

  25. Verma, S.B., Manisankar, C., Akshara, P.: Control of shock-wave boundary layer interaction using steady micro-jets. Shock Waves 25(5), 535–543 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Prem Ramaswamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramaswamy, D.P., Hinke, R., Schreyer, AM. (2020). Influence of Jet Spacing and Injection Pressure on Separation Control with Air-Jet Vortex Generators. In: Dillmann, A., Heller, G., Krämer, E., Wagner, C., Tropea, C., Jakirlić, S. (eds) New Results in Numerical and Experimental Fluid Mechanics XII. DGLR 2018. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 142. Springer, Cham. https://doi.org/10.1007/978-3-030-25253-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25253-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25252-6

  • Online ISBN: 978-3-030-25253-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics