Skip to main content

The Biology of Persister Cells in Escherichia coli

  • Chapter
  • First Online:
Persister Cells and Infectious Disease

Abstract

Bacterial persisters are dormant, antibiotic-tolerant cells that are phenotypic variants formed within a regularly growing, drug-susceptible population. They differ from genetically or phenotypically resistant cells in that their survival of antibiotic treatment is rooted in a dormant physiology and not in the obstruction of drug–target interactions. In this chapter, I assembled a concise overview of the formation, survival, and evolution of persisters formed by the model organism Escherichia coli. Though the formation of persister cells has stochastic aspects, it is often induced by starvation or stress as a specialized differentiation of part of the population (responsive diversification). Consequently, the phenotypic heterogeneity of persisters and regularly growing cells is commonly interpreted as a bet-hedging strategy that ensures population survival under the threat of catastrophic events and that at the same time optimizes the benefit from favorable conditions. Multiple different molecular mechanisms have been implicated in persister cell formation and can be grouped into two major classes. Non-specific mechanisms affect bacterial physiology on a global scale via, for example, alterations of energy metabolism, or are purely stochastic events that shut down cellular processes by an accidental malfunctioning (persistence as stuff happens). Conversely, specialized mechanisms directly inhibit antibiotic targets often through activation of fine-tuned molecular switches known as toxin-antitoxin modules. In addition, the repair of cellular damage caused by antibiotics is critical for the resuscitation of persister cells. A major obstacle to coherently interpreting these findings is the fragmented nature of the literature and several controversies that should be consolidated by future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel Zur Wiesch, P., Abel, S., Gkotzis, S., Ocampo, P., Engelstadter, J., Hinkley, T., Magnus, C., Waldor, M. K., Udekwu, K., & Cohen, T. (2015). Classic reaction kinetics can explain complex patterns of antibiotic action. Science Translational Medicine, 7, 287ra73.

    Article  PubMed  CAS  Google Scholar 

  • Aldred, K. J., Kerns, R. J., & Osheroff, N. (2014). Mechanism of quinolone action and resistance. Biochemistry, 53, 1565–1574.

    Article  CAS  PubMed  Google Scholar 

  • Allison, K. R., Brynildsen, M. P., & Collins, J. J. (2011). Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature, 473, 216–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amato, S. M., & Brynildsen, M. P. (2015). Persister heterogeneity arising from a single metabolic stress. Current Biology, 25, 2090–2098.

    Article  CAS  PubMed  Google Scholar 

  • Amato, S. M., Orman, M. A., & Brynildsen, M. P. (2013). Metabolic control of persister formation in Escherichia coli. Molecular Cell, 50, 475–487.

    Article  CAS  PubMed  Google Scholar 

  • Baharoglu, Z., & Mazel, D. (2014). SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiology Reviews, 38, 1126–1145.

    Article  CAS  PubMed  Google Scholar 

  • Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial persistence as a phenotypic switch. Science, 305, 1622–1625.

    Article  CAS  PubMed  Google Scholar 

  • Balaban, N. Q., Gerdes, K., Lewis, K., & Mckinney, J. D. (2013). A problem of persistence: Still more questions than answers? Nature Reviews. Microbiology, 11, 587–591.

    Article  CAS  PubMed  Google Scholar 

  • Berghoff, B. A., & Wagner, E. G. H. (2017). RNA-based regulation in type I toxin-antitoxin systems and its implication for bacterial persistence. Current Genetics, 63, 1011–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berghoff, B. A., Hoekzema, M., Aulbach, L., & Wagner, E. G. (2017). Two regulatory RNA elements affect TisB-dependent depolarization and persister formation. Molecular Microbiology, 103, 1020–1033.

    Article  CAS  PubMed  Google Scholar 

  • Bigger, J. (1944). Treatment of staphylococcal infections with penicillin by intermittent sterilisation. The Lancet, 244, 497–500.

    Article  Google Scholar 

  • Blango, M. G., & Mulvey, M. A. (2010). Persistence of uropathogenic Escherichia coli in the face of multiple antibiotics. Antimicrobial Agents and Chemotherapy, 54, 1855–1863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brauner, A., Fridman, O., Gefen, O., & Balaban, N. Q. (2016). Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nature Reviews. Microbiology, 14, 320–330.

    Article  CAS  PubMed  Google Scholar 

  • Cho, H., Uehara, T., & Bernhardt, T. G. (2014). Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell, 159, 1300–1311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claudi, B., Spröte, P., Chirkova, A., Personnic, N., Zankl, J., SchĂĽrmann, N., Schmidt, A., & Bumann, D. (2014). Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell, 158, 722–733.

    Article  CAS  PubMed  Google Scholar 

  • Conlon, B. P., Rowe, S. E., Gandt, A. B., Nuxoll, A. S., Donegan, N. P., Zalis, E. A., Clair, G., Adkins, J. N., Cheung, A. L., & Lewis, K. (2016). Persister formation in Staphylococcus aureus is associated with ATP depletion. Nature Microbiology, 1, 16051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corona, F., & Martinez, J. L. (2013). Phenotypic resistance to antibiotics. Antibiotics (Basel), 2, 237–255.

    Article  CAS  Google Scholar 

  • Dörr, T., Lewis, K., & Vulić, M. (2009). SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genetics, 5, e1000760.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dörr, T., Vulic, M., & Lewis, K. (2010). Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biology, 8, e1000317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dörr, T., Alvarez, L., Delgado, F., Davis, B. M., Cava, F., & Waldor, M. K. (2016). A cell wall damage response mediated by a sensor kinase/response regulator pair enables beta-lactam tolerance. Proceedings of the National Academy of Sciences of the United States of America, 113, 404–409.

    Article  PubMed  CAS  Google Scholar 

  • El Meouche, I., Siu, Y., & Dunlop, M. J. (2016). Stochastic expression of a multiple antibiotic resistance activator confers transient resistance in single cells. Scientific Reports, 6, 19538.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fauvart, M., De Groote, V. N., & Michiels, J. (2011). Role of persister cells in chronic infections: Clinical relevance and perspectives on anti-persister therapies. Journal of Medical Microbiology, 60, 699–709.

    Article  PubMed  Google Scholar 

  • Fisher, R. A., Gollan, B., & Helaine, S. (2017). Persistent bacterial infections and persister cells. Nature Reviews. Microbiology, 15, 453–464.

    Article  CAS  PubMed  Google Scholar 

  • Fridman, O., Goldberg, A., Ronin, I., Shoresh, N., & Balaban, N. Q. (2014). Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature, 513, 418–421.

    Article  CAS  PubMed  Google Scholar 

  • Gohara, D. W., & Yap, M. F. (2018). Survival of the drowsiest: The hibernating 100S ribosome in bacterial stress management. Current Genetics, 64, 753–760.

    Article  CAS  PubMed  Google Scholar 

  • Goneau, L. W., Yeoh, N. S., Macdonald, K. W., Cadieux, P. A., Burton, J. P., Razvi, H., & Reid, G. (2014). Selective target inactivation rather than global metabolic dormancy causes antibiotic tolerance in uropathogens. Antimicrobial Agents and Chemotherapy, 58, 2089–2097.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goormaghtigh, F., & Van Melderen, L. (2016). Optimized method for measuring persistence in Escherichia coli with improved reproducibility. Methods in Molecular Biology, 1333, 43–52.

    Article  CAS  PubMed  Google Scholar 

  • Goormaghtigh, F., Fraikin, N., Putrins, M., Hallaert, T., Hauryliuk, V., Garcia-Pino, A., Sjodin, A., Kasvandik, S., Udekwu, K., Tenson, T., Kaldalu, N., & Van Melderen, L. (2018a). Reassessing the role of type II toxin-antitoxin systems in formation of Escherichia coli type II persister cells. MBio, 9, e00640-18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goormaghtigh, F., Fraikin, N., Putrins, M., Hauryliuk, V., Garcia-Pino, A., Udekwu, K., Tenson, T., Kaldalu, N., & Van Melderen, L. (2018b). Reply to holden and errington, “Type II toxin-antitoxin systems and persister cells”. MBio, 9, e01838-18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutierrez, A., Jain, S., Bhargava, P., Hamblin, M., Lobritz, M. A., & Collins, J. J. (2017). Understanding and sensitizing density-dependent persistence to quinolone antibiotics. Molecular Cell, 68, 1147–1154.e3.

    Article  CAS  PubMed  Google Scholar 

  • Harms, A., Maisonneuve, E., & Gerdes, K. (2016). Mechanisms of bacterial persistence during stress and antibiotic exposure. Science, 354, aaf4268.

    Article  CAS  PubMed  Google Scholar 

  • Harms, A., Fino, C., Sørensen, M. A., Semsey, S., & Gerdes, K. (2017). Prophages and growth dynamics confound experimental results with antibiotic-tolerant persister cells. MBio, 8, e01964-17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harms, A., Brodersen, D. E., Mitarai, N., & Gerdes, K. (2018). Toxins, targets, and triggers: An overview of toxin-antitoxin biology. Molecular Cell, 70, 768–784.

    Article  CAS  PubMed  Google Scholar 

  • Hauryliuk, V., Atkinson, G. C., Murakami, K. S., Tenson, T., & Gerdes, K. (2015). Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nature Reviews. Microbiology, 13, 298–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helaine, S., Cheverton, A. M., Watson, K. G., Faure, L. M., Matthews, S. A., & Holden, D. W. (2014). Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science, 343, 204–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofsteenge, N., Van Nimwegen, E., & Silander, O. K. (2013). Quantitative analysis of persister fractions suggests different mechanisms of formation among environmental isolates of E. coli. BMC Microbiology, 13, 25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Joers, A., Kaldalu, N., & Tenson, T. (2010). The frequency of persisters in Escherichia coli reflects the kinetics of awakening from dormancy. Journal of Bacteriology, 192, 3379–3384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, P. J., & Levin, B. R. (2013). Pharmacodynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus. PLoS Genetics, 9, e1003123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaldalu, N., Hauryliuk, V., & Tenson, T. (2016). Persisters-as elusive as ever. Applied Microbiology and Biotechnology, 100, 6545–6553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keren, I., Kaldalu, N., Spoering, A., Wang, Y., & Lewis, K. (2004a). Persister cells and tolerance to antimicrobials. FEMS Microbiology Letters, 230, 13–18.

    Article  CAS  PubMed  Google Scholar 

  • Keren, I., Shah, D., Spoering, A., Kaldalu, N., & Lewis, K. (2004b). Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. Journal of Bacteriology, 186, 8172–8180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keren, I., Wu, Y., Inocencio, J., Mulcahy, L. R., & Lewis, K. (2013). Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science, 339, 1213–1216.

    Article  CAS  PubMed  Google Scholar 

  • Kohanski, M. A., Dwyer, D. J., & Collins, J. J. (2010). How antibiotics kill bacteria: From targets to networks. Nature Reviews. Microbiology, 8, 423–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotte, O., Volkmer, B., Radzikowski, J. L., & Heinemann, M. (2014). Phenotypic bistability in Escherichia coli’s central carbon metabolism. Molecular Systems Biology, 10, 736.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krause, K. M., Serio, A. W., Kane, T. R., & Connolly, L. E. (2016). Aminoglycosides: An overview. Cold Spring Harbor Perspectives in Medicine, 6, a027029.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K., Wertheim, H. F., Sumpradit, N., Vlieghe, E., Hara, G. L., Gould, I. M., Goossens, H., Greko, C., SO, A. D., Bigdeli, M., Tomson, G., Woodhouse, W., Ombaka, E., Peralta, A. Q., Qamar, F. N., Mir, F., Kariuki, S., Bhutta, Z. A., Coates, A., Bergstrom, R., Wright, G. D., Brown, E. D., & Cars, O. (2013). Antibiotic resistance-the need for global solutions. The Lancet Infectious Diseases, 13, 1057–1098.

    Article  PubMed  Google Scholar 

  • Lee, A. J., Wang, S., Meredith, H. R., Zhuang, B., Dai, Z., & You, L. (2018). Robust, linear correlations between growth rates and beta-lactam-mediated lysis rates. Proceedings of the National Academy of Sciences of the United States of America, 115, 4069–4074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin, B. R., & Rozen, D. E. (2006). Non-inherited antibiotic resistance. Nature Reviews. Microbiology, 4, 556–562.

    Article  CAS  PubMed  Google Scholar 

  • Levin, B. R., Concepcion-Acevedo, J., & Udekwu, K. I. (2014). Persistence: A copacetic and parsimonious hypothesis for the existence of non-inherited resistance to antibiotics. Current Opinion in Microbiology, 21, 18–21.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, K. (2005). Persister cells and the riddle of biofilm survival. Biochemistry (Mosc), 70, 267–274.

    Article  CAS  Google Scholar 

  • Lewis, K. (2010). Persister cells. Annual Review of Microbiology, 64, 357–372.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., & Zhang, Y. (2007). PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrobial Agents and Chemotherapy, 51, 2092–2099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., Ji, L., Shi, W., Xie, J., & Zhang, Y. (2013). Trans-translation mediates tolerance to multiple antibiotics and stresses in Escherichia coli. The Journal of Antimicrobial Chemotherapy, 68, 2477–2481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., & Imlay, J. A. (2013). Cell death from antibiotics without the involvement of reactive oxygen species. Science, 339, 1210–1213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luidalepp, H., Joers, A., Kaldalu, N., & Tenson, T. (2011). Age of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered persistence. Journal of Bacteriology, 193, 3598–3605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, C., Sim, S., Shi, W., Du, L., Xing, D., & Zhang, Y. (2010). Energy production genes sucB and ubiF are involved in persister survival and tolerance to multiple antibiotics and stresses in Escherichia coli. FEMS Microbiology Letters, 303, 33–40.

    Article  CAS  PubMed  Google Scholar 

  • Maisonneuve, E., & Gerdes, K. (2014). Molecular mechanisms underlying bacterial persisters. Cell, 157, 539–548.

    Article  CAS  PubMed  Google Scholar 

  • McKay, S. L., & Portnoy, D. A. (2015). Ribosome hibernation facilitates tolerance of stationary-phase bacteria to aminoglycosides. Antimicrobial Agents and Chemotherapy, 59, 6992–6999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michiels, J. E., Van Den Bergh, B., Verstraeten, N., Fauvart, M., & Michiels, J. (2016). In vitro emergence of high persistence upon periodic aminoglycoside challenge in the ESKAPE pathogens. Antimicrobial Agents and Chemotherapy, 60, 4630–4637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, C., Thomsen, L. E., Gaggero, C., Mosseri, R., Ingmer, H., & Cohen, S. N. (2004). SOS response induction by Ăź-lactams and bacterial defense against antibiotic lethality. Science, 305, 1629–1631.

    Article  CAS  PubMed  Google Scholar 

  • Molina-Quiroz, R. C., Lazinski, D. W., Camilli, A., & Levy, S. B. (2016). Transposon-sequencing analysis unveils novel genes involved in the generation of persister cells in uropathogenic Escherichia coli. Antimicrobial Agents and Chemotherapy, 60, 6907–6910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mordukhova, E. A., & Pan, J. G. (2014). Stabilization of homoserine-O-succinyltransferase (MetA) decreases the frequency of persisters in Escherichia coli under stressful conditions. PLoS One, 9, e110504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moyed, H. S., & Bertrand, K. P. (1983). hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. Journal of Bacteriology, 155, 768–775.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neidhardt, F. C. (2006). Apples, oranges and unknown fruit. Nature Reviews. Microbiology, 4, 876.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, D., Joshi-Datar, A., Lepine, F., Bauerle, E., Olakanmi, O., Beer, K., Mckay, G., Siehnel, R., Schafhauser, J., Wang, Y., Britigan, B. E., & Singh, P. K. (2011). Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science, 334, 982–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ocampo, P. S., Lazar, V., Papp, B., Arnoldini, M., Abel Zur Wiesch, P., Busa-Fekete, R., Fekete, G., Pal, C., Ackermann, M., & Bonhoeffer, S. (2014). Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrobial Agents and Chemotherapy, 58, 4573–4582.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orman, M. A., & Brynildsen, M. P. (2013). Dormancy is not necessary or sufficient for bacterial persistence. Antimicrobial Agents and Chemotherapy, 57, 3230–3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennington, J. M., & Rosenberg, S. M. (2007). Spontaneous DNA breakage in single living Escherichia coli cells. Nature Genetics, 39, 797–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pu, Y., Zhao, Z., Li, Y., Zou, J., Ma, Q., Zhao, Y., Ke, Y., Zhu, Y., Chen, H., Baker, M. A., Ge, H., Sun, Y., Xie, X. S., & BAI, F. (2016). Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Molecular Cell, 62, 284–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renggli, S., Keck, W., Jenal, U., & Ritz, D. (2013). Role of autofluorescence in flow cytometric analysis of Escherichia coli treated with bactericidal antibiotics. Journal of Bacteriology, 195, 4067–4073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher, M. A., Balani, P., Min, J., Chinnam, N. B., Hansen, S., Vulic, M., Lewis, K., & Brennan, R. G. (2015). HipBA-promoter structures reveal the basis of heritable multidrug tolerance. Nature, 524, 59–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan, Y., Lazinski, D., Rowe, S., Camilli, A., & Lewis, K. (2015). Genetic basis of persister tolerance to aminoglycosides in Escherichia coli. MBio, 6, e00078-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shan, Y., Brown Gandt, A., Rowe, S. E., Deisinger, J. P., Conlon, B. P., & Lewis, K. (2017). ATP-dependent persister formation in Escherichia coli. MBio, 8, e02267-16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spoering, A. L., Vulic, M., & Lewis, K. (2006). GlpD and PlsB participate in persister cell formation in Escherichia coli. Journal of Bacteriology, 188, 5136–5144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanyan, K., Wenseleers, T., Duenez-Guzman, E. A., Muratori, F., Van Den Bergh, B., Verstraeten, N., De Meester, L., Verstrepen, K. J., Fauvart, M., & Michiels, J. (2015). Fitness trade-offs explain low levels of persister cells in the opportunistic pathogen Pseudomonas aeruginosa. Molecular Ecology, 24, 1572–1583.

    Article  PubMed  Google Scholar 

  • Stewart, B., & Rozen, D. E. (2012). Genetic variation for antibiotic persistence in Escherichia coli. Evolution, 66, 933–939.

    Article  PubMed  Google Scholar 

  • Theodore, A., Lewis, K., & Vulic, M. (2013). Tolerance of Escherichia coli to fluoroquinolone antibiotics depends on specific components of the SOS response pathway. Genetics, 195, 1265–1276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Den Bergh, B., Michiels, J. E., Wenseleers, T., Windels, E. M., Boer, P. V., Kestemont, D., De Meester, L., Verstrepen, K. J., Verstraeten, N., Fauvart, M., & Michiels, J. (2016). Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence. Nature Microbiology, 1, 16020.

    Article  PubMed  CAS  Google Scholar 

  • Van Den Bergh, B., Fauvart, M., & Michiels, J. (2017). Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiology Reviews, 41, 219–251.

    Article  PubMed  CAS  Google Scholar 

  • Van Melderen, L., & Wood, T. K. (2017). Commentary: What is the link between stringent response, endoribonuclease encoding type II toxin-antitoxin systems and persistence? Frontiers in Microbiology, 8, 191.

    PubMed  PubMed Central  Google Scholar 

  • Vazquez-Laslop, N., Lee, H., & Neyfakh, A. A. (2006). Increased persistence in Escherichia coli caused by controlled expression of toxins or other unrelated proteins. Journal of Bacteriology, 188, 3494–3497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veening, J. W., Smits, W. K., & Kuipers, O. P. (2008). Bistability, epigenetics, and bet-hedging in bacteria. Annual Review of Microbiology, 62, 193–210.

    Article  CAS  PubMed  Google Scholar 

  • Vega, N. M., Allison, K. R., Khalil, A. S., & Collins, J. J. (2012). Signaling-mediated bacterial persister formation. Nature Chemical Biology, 8, 431–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verstraeten, N., Knapen, W. J., Kint, C. I., Liebens, V., Van Den Bergh, B., Dewachter, L., Michiels, J. E., Fu, Q., David, C. C., Fierro, A. C., Marchal, K., Beirlant, J., Versees, W., Hofkens, J., Jansen, M., Fauvart, M., & Michiels, J. (2015). Obg and membrane depolarization are part of a microbial bet-hedging strategy that leads to antibiotic tolerance. Molecular Cell, 59, 9–21.

    Article  CAS  PubMed  Google Scholar 

  • Völzing, K. G., & Brynildsen, M. P. (2015). Stationary-phase persisters to ofloxacin sustain DNA damage and require repair systems only during recovery. MBio, 6, e00731–e00715.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wakamoto, Y., Dhar, N., Chait, R., Schneider, K., Signorino-Gelo, F., Leibler, S., & Mckinney, J. D. (2013). Dynamic persistence of antibiotic-stressed mycobacteria. Science, 339, 91–95.

    Article  CAS  PubMed  Google Scholar 

  • Wilmaerts, D., Bayoumi, M., Dewachter, L., Knapen, W., Mika, J. T., Hofkens, J., Dedecker, P., Maglia, G., Verstraeten, N., & Michiels, J. (2018). The persistence-inducing toxin HokB forms dynamic pores that cause ATP leakage. MBio, 9, e00744-18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiuff, C., & Andersson, D. I. (2007). Antibiotic treatment in vitro of phenotypically tolerant bacterial populations. The Journal of Antimicrobial Chemotherapy, 59, 254–263.

    Article  CAS  PubMed  Google Scholar 

  • Wood, T. K., Knabel, S. J., & Kwan, B. W. (2013). Bacterial persister cell formation and dormancy. Applied and Environmental Microbiology, 79, 7116–7121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J. H., Bening, S. C., & Collins, J. J. (2017). Antibiotic efficacy-context matters. Current Opinion in Microbiology, 39, 73–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Prof. Kenn Gerdes, Prof. Urs Jenal, Dr. Szabolcs Semsey, and Dr. Pablo Manfredi for stimulating discussions about the elusive nature of genetically encoded antibiotic tolerance. This work was supported by Swiss National Science Foundation (SNSF) Ambizione Fellowship PZ00P3_180085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Harms .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harms, A. (2019). The Biology of Persister Cells in Escherichia coli . In: Lewis, K. (eds) Persister Cells and Infectious Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-25241-0_3

Download citation

Publish with us

Policies and ethics