Abstract
Antibiotic persistence is defined as the ability of a subpopulation of bacteria within a clonal antibiotic-susceptible population to survive antibiotic treatment. Studies on antibiotic persistence have traditionally been carried out on bacteria cultured in laboratory media. However, over recent years, there has been a push to study antibiotic persisters in more physiologically relevant systems. Thus, the concept of antibiotic persistence during infection, which refers to the ability of a subpopulation of bacteria to survive combined host and antibiotic challenges, has emerged as a major new frontier of research. Here, we discuss the relevance and principles of this concept using relapsing Salmonella enterica infections as an example. We critically evaluate the clinical and experimental evidence for the existence and importance of antibiotic persisters in relapsing Salmonella infections; we outline our current understanding of the molecular mechanisms that enable successful antibiotic persistence during infection; and, finally, we discuss the challenges for this nascent field going forward.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Avci, P., Karimi, M., Sadasivam, M., Antunes-Melo, W., Carrasco, E., & Hamblin, M. (2018). In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence, 9, 28–63.
Bhan, M., Bahl, R., & Bhatnagar, S. (2005). Typhoid and paratyphoid fever. Lancet, 366, 749–762.
Caron, J., Loredo-Osti, J., Laroche, L., Skamene, E., Morgan, K., & Malo, D. (2002). Identification of genetic loci controlling bacterial clearance in experimental Salmonella enteritidis infection: An unexpected role of Nramp1 (Slc11a1) in the persistence of infection in mice. Genes and Immunity, 3, 196–204.
Carter, P., & Collins, F. (1974). The route of enteric infection in normal mice. The Journal of Experimental Medicine, 139, 1189–1203.
Cellier, M., Courville, P., & Campion, C. (2007). Nramp1 phagocyte intracellular metal withdrawal defense. Microbes and Infection, 9, 1662–1670.
Cheverton, A., Gollan, B., Przydacz, M., Wong, C., Mylona, A., Hare, S., & Helaine, S. (2016). A Salmonella toxin promotes persister formation through acetylation of tRNA. Molecular Cell, 63, 86–96.
Cirillo, D., Valdivia, R., Monack, D., & Falkow, S. (1998). Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Molecular Microbiology, 30, 175–188.
Claudi, B., Spröte, P., Chirkova, A., Personnic, N., Zankl, J., Schürmann, N., Schmidt, A., & Bumann, D. (2014). Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell, 158, 722–733.
Conlon, B., Rowe, S., Gandt, A., Nuxoll, A., Donegan, N., Zalis, E., Clair, G., Adkins, J., Cheung, A., & Lewis, K. (2016). Persister formation in Staphylococcus aureus is associated with ATP depletion. Nature Microbiology, 1, 16051.
Feasey, N., Dougan, G., Kingsley, R., Heyderman, R., & Gordon, M. (2012). Invasive non-typhoidal Salmonella disease: An emerging and neglected tropical disease in Africa. Lancet, 379, 2489–2499.
Fields, P., Swanson, R., Haidaris, C., & Heffron, F. (1986). Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proceedings of the National Academy of Sciences of the United States of America, 83, 5189–5193.
Figueira, R., & Holden, D. (2012). Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology, 158, 1147–1161.
Fisher, R., Gollan, B., & Helaine, S. (2017). Persistent bacterial infections and persister cells. Nature Reviews. Microbiology, 15, 453–464.
Galán, J. (2001). Salmonella interactions with host cells: Type III secretion at work. Annual Review of Cell and Developmental Biology, 17, 53–86.
Galán, J., & Curtiss, R., 3rd. (1989). Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proceedings of the National Academy of Sciences of the United States of America, 86, 6383–6387.
Griffin, A., Li, L., Voedisch, S., Pabst, O., & Mcsorley, S. (2011). Dissemination of persistent intestinal bacteria via the mesenteric lymph nodes causes typhoid relapse. Infection and Immunity, 79, 1479–1488.
Helaine, S., Thompson, J., Watson, K., Liu, M., Boyle, C., & Holden, D. (2010). Dynamics of intracellular bacterial replication at the single cell level. Proceedings of the National Academy of Sciences of the United States of America, 107, 3746–3751.
Helaine, S., Cheverton, A., Watson, K., Faure, L., Matthews, S., & Holden, D. (2014). Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science, 343, 204–208.
Hensel, M., Shea, J., Gleeson, C., Jones, M., Dalton, E., & Holden, D. (1995). Simultaneous identification of bacterial virulence genes by negative selection. Science, 269, 400–403.
Hensel, M., Shea, J., Waterman, S., Mundy, R., Nikolaus, T., Banks, G., Vazquez-Torres, A., Gleeson, C., Fang, F., & Holden, D. (1998). Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Molecular Microbiology, 30, 163–174.
Jennings, E., Thurston, T., & Holden, D. (2017). Salmonella SPI-2 type III secretion system effectors: Molecular mechanisms and physiological consequences. Cell Host and Microbe, 22, 217–231.
Kaiser, P., Regoes, R., Dolowschiak, T., Wotzka, S., Lengefeld, J., Slack, E., Grant, A., Ackermann, M., & Hardt, W. (2014). Cecum lymph node dendritic cells harbor slow-growing bacteria phenotypically tolerant to antibiotic treatment. PLoS Biology, 12, e1001793.
Khan, S., Stratford, R., Wu, T., Mckelvie, N., Bellaby, T., Hindle, Z., Sinha, K., Eltze, S., Mastroeni, P., Pickard, D., Dougan, G., Chatfield, S., & Brennan, F. (2003). Salmonella typhi and S. typhimurium derivatives harbouring deletions in aromatic biosynthesis and Salmonella Pathogenicity Island-2 (SPI-2) genes as vaccines and vectors. Vaccine, 21, 538–548.
Klemm, E., Gkrania-Klotsas, E., Hadfield, J., Forbester, J., Harris, S., Hale, C., Heath, J., Wileman, T., Clare, S., Kane, L., Goulding, D., Otto, T., Kay, S., Doffinger, R., Cooke, F., Carmichael, A., Lever, A., Parkhill, J., Maclennan, C., Kumararatne, D., Dougan, G., & Kingsley, R. (2016). Emergence of host-adapted Salmonella Enteritidis through rapid evolution in an immunocompromised host. Nature Microbiology, 1, 15023.
Levine, M., Black, R., & Lanata, C. (1982). Precise estimation of the numbers of chronic carriers of Salmonella typhi in Santiago, Chile, an endemic area. The Journal of Infectious Diseases, 146, 724–726.
Manina, G., Dhar, N., & Mckinney, J. (2015). Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms. Cell Host and Microbe, 17, 32–46.
Marzel, A., Desai, P., Goren, A., Schorr, Y., Nissan, I., Porwollik, S., Valinsky, L., Mcclelland, M., Rahav, G., & Gal-Mor, O. (2016). Persistent infections by nontyphoidal Salmonella in humans: Epidemiology and genetics. Clinical Infectious Diseases, 62, 879–886.
Monack, D. (2013). Helicobacter and salmonella persistent infection strategies. Cold Spring Harbor Perspectives in Medicine, 3, a010348.
Monack, D., Bouley, D., & Falkow, S. (2004). Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNgamma neutralization. The Journal of Experimental Medicine, 199, 231–241.
Okoro, C., Kingsley, R., Quail, M., Kankwatira, A., Feasey, N., Parkhill, J., Dougan, G., & Gordon, M. (2012). High-resolution single nucleotide polymorphism analysis distinguishes recrudescence and reinfection in recurrent invasive nontyphoidal Salmonella typhimurium disease. Clinical Infectious Diseases, 54, 955–963.
Richter-Dahlfors, A., Buchan, A., & Finlay, B. (1997). Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. The Journal of Experimental Medicine, 186, 569–580.
Rossi, O., Dybowski, R., Maskell, D., Grant, A., Restif, O., & Mastroeni, P. (2017). Within-host spatiotemporal dynamics of systemic Salmonella infection during and after antimicrobial treatment. The Journal of Antimicrobial Chemotherapy, 72, 3390–3397.
Rycroft, J., Gollan, B., Grabe, G., Hall, A., Cheverton, A., Larrouy-Maumus, G., Hare, S., & Helaine, S. (2018). Activity of acetyltransferase toxins involved in Salmonella persister formation during macrophage infection. Nature Communications, 9, 1993.
Salcedo, S., Noursadeghi, M., Cohen, J., & Holden, D. (2001). Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivo. Cellular Microbiology, 3, 587–597.
Shan, Y., Brown Gandt, A., Rowe, S., Deisinger, J., Conlon, B., & Lewis, K. (2017). ATP-dependent persister formation in Escherichia coli. MBio, 8, e02267-16.
Shea, J., Hensel, M., Gleeson, C., & Holden, D. (1996). Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proceedings of the National Academy of Sciences of the United States of America, 93, 2593–2597.
Shpargel, J., Berardi, R., & Lenz, D. (1985). Salmonella Typhi carrier state 52 years after illness with typhoid fever: A case study. American Journal of Infection Control, 13, 122–123.
Sinnott, C., & Teall, A. (1987). Persistent gallbladder carriage of Salmonella typhi. Lancet, 1, 976.
Slattery, A., Victorsen, A., Brown, A., Hillman, K., & Phillips, G. (2013). Isolation of highly persistent mutants of Salmonella enterica serovar typhimurium reveals a new toxin-antitoxin module. Journal of Bacteriology, 195, 647–657.
Stapels, D., Hill, P., Westermann, A., Fisher, R., Thurston, T., Saliba, A., Blommestein, I., Vogel, J., & Helaine, S. (2018). Salmonella persisters undermine host immune defences during antibiotic treatment. Science, 362, 1156–1160.
Vogelsang, T., & Boe, J. (1948). Temporary and chronic carriers of Salmonella typhi and Salmonella paratyphi B. The Journal of Hygiene (Lond), 46, 252–261.
Wain, J., Hien, T., Connerton, P., Ali, T., Parry, C., Chinh, N., Vinh, H., Phuong, C., Ho, V., Diep, T., Farrar, J., White, N., & Dougan, G. (1999). Molecular typing of multiple-antibiotic-resistant Salmonella enterica serovar Typhi from Vietnam: Application to acute and relapse cases of typhoid fever. Journal of Clinical Microbiology, 37, 2466–2472.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Hill, P.W.S., Helaine, S. (2019). Antibiotic Persisters and Relapsing Salmonella enterica Infections. In: Lewis, K. (eds) Persister Cells and Infectious Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-25241-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-25241-0_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-25240-3
Online ISBN: 978-3-030-25241-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)