Skip to main content

Host–Pathogen Interactions Influencing Mycobacterium tuberculosis Persistence and Drug Tolerance

  • Chapter
  • First Online:

Abstract

Mycobacterium tuberculosis (Mtb) infection stimulates host immune responses that limit bacterial replication. During pathogenesis, the bacterium must sense and adapt to a variety of stressful environments including nutrient limitation, hypoxia, and acidification of the environment. These cues can drive the bacterium to establish a state of non-replicating persistence (NRP). NRP bacteria are tolerant to antibiotics and are thought to play a role in the months long course of tuberculosis (TB) therapy. Therefore, understanding the molecular mechanisms of Mtb establishment and maintenance of NRP will provide key insights into Mtb pathogenesis and present new drug targets that may shorten the course of TB therapy. In this chapter, we will examine host–pathogen dynamics that are associated with Mtb persistence and drug tolerance, including the use of in vitro and in vivo models to study Mtb persistence. Specific in vitro models of NRP will be examined, with a focus on nutrient starvation, hypoxia and acidic pH as host-relevant environments that promote NRP. Therapeutic strategies to control Mtb persistence will be also examined, with a focus on newly discovered compounds that target redox homeostasis, cell envelope integrity, respiration and ATP homeostasis, and the DosRST signaling pathway.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abramovitch, R. B. (2018). Mycobacterium tuberculosis reporter strains as tools for drug discovery and development. IUBMB Life, 70(9), 818–825. https://doi.org/10.1002/iub.1862.

    Article  CAS  PubMed  Google Scholar 

  • Abramovitch, R. B., Rohde, K. H., Hsu, F. F., & Russell, D. G. (2011). aprABC: A Mycobacterium tuberculosis complex-specific locus that modulates pH-driven adaptation to the macrophage phagosome. Molecular Microbiology, 80(3), 678–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams, K. N., Takaki, K., Connolly, L. E., Wiedenhoft, H., Winglee, K., Humbert, O., Edelstein, P. H., Cosma, C. L., & Ramakrishnan, L. (2011). Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell, 145(1), 39–53. https://doi.org/10.1016/j.cell.2011.02.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N., & Jarlier, V. (2005). A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science (New York), 307(5707), 223–227. https://doi.org/10.1126/science.1106753.

    Article  CAS  Google Scholar 

  • Baek, S. H., Li, A. H., & Sassetti, C. M. (2011). Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biology, 9(5), e1001065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker, J. J., & Abramovitch, R. B. (2018). Genetic and metabolic regulation of Mycobacterium tuberculosis acid growth arrest. Scientific Reports, 8(1), 4168. https://doi.org/10.1038/s41598-018-22343-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker, J. J., Johnson, B. K., & Abramovitch, R. B. (2014). Slow growth of Mycobacterium tuberculosis at acidic pH is regulated by phoPR and host-associated carbon sources. Molecular Microbiology, 94(1), 56–69. https://doi.org/10.1111/mmi.12688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial persistence as a phenotypic switch. Science (New York), 305(5690), 1622–1625. https://doi.org/10.1126/science.1099390.

    Article  CAS  Google Scholar 

  • Bald, D., Villellas, C., Lu, P., & Koul, A. (2017). Targeting energy metabolism in Mycobacterium tuberculosis, a new paradigm in antimycobacterial drug discovery. mBio, 8(2). https://doi.org/10.1128/mBio.00272-17

  • Barry, C. E., 3rd, Boshoff, H. I., Dartois, V., Dick, T., Ehrt, S., Flynn, J., Schnappinger, D., Wilkinson, R. J., & Young, D. (2009). The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nature Reviews. Microbiology, 7(12), 845–855. https://doi.org/10.1038/nrmicro2236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betts, J. C., Lukey, P. T., Robb, L. C., McAdam, R. A., & Duncan, K. (2002). Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Molecular Microbiology, 43(3), 717–731.

    Article  CAS  PubMed  Google Scholar 

  • Bigger, J. (1944). Treatment of Staphylococcal infections with penicillin by intermittent sterilisation. The Lancet, 244(6320), 497–500. https://doi.org/10.1016/S0140-6736(00)74210-3.

    Article  Google Scholar 

  • Boon, C., & Dick, T. (2002). Mycobacterium bovis BCG response regulator essential for hypoxic dormancy. Journal of Bacteriology, 184(24), 6760–6767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borisov, S. E., Bogorodskaya, E. M., Volchenkov, G. V., Kulchavenya, E. V., Maryandyshev, A. O., Skornyakov, S. N., Talibov, O. B., Tikhonov, A. M., & Vasilyeva, I. A. (2018). Efficiency and safety of chemotherapy regimen with SQ109 in those suffering from multiple drug resistant tuberculosis. Tuberculosis and Lung Diseases, 96(3), 6–18.

    Article  Google Scholar 

  • Boshoff, H. I., & Barry, C. E., 3rd. (2005). Tuberculosis – metabolism and respiration in the absence of growth. Nature Reviews. Microbiology, 3(1), 70–80. https://doi.org/10.1038/nrmicro1065.

    Article  CAS  PubMed  Google Scholar 

  • Brotz-Oesterhelt, H., & Sass, P. (2014). Bacterial caseinolytic proteases as novel targets for antibacterial treatment. International Journal of Medical Microbiology, 304(1), 23–30. https://doi.org/10.1016/j.ijmm.2013.09.001.

    Article  CAS  PubMed  Google Scholar 

  • Brotz-Oesterhelt, H., Beyer, D., Kroll, H. P., Endermann, R., Ladel, C., Schroeder, W., Hinzen, B., Raddatz, S., Paulsen, H., Henninger, K., Bandow, J. E., Sahl, H. G., & Labischinski, H. (2005). Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nature Medicine, 11(10), 1082–1087. https://doi.org/10.1038/nm1306.

    Article  CAS  PubMed  Google Scholar 

  • Chao, M. C., & Rubin, E. J. (2010). Letting sleeping dos lie: Does dormancy play a role in tuberculosis? Annual Review of Microbiology, 64, 293–311. https://doi.org/10.1146/annurev.micro.112408.134043.

    Article  CAS  PubMed  Google Scholar 

  • Chapman, J. S., & Bernard, J. S. (1962). The tolerances of unclassified mycobacteria. I. Limits of pH tolerance. The American Review of Respiratory Disease, 86, 582–583. https://doi.org/10.1164/arrd.1962.86.4.582.

    Article  CAS  PubMed  Google Scholar 

  • Chen, P., Gearhart, J., Protopopova, M., Einck, L., & Nacy, C. A. (2006). Synergistic interactions of SQ109, a new ethylene diamine, with front-line antitubercular drugs in vitro. The Journal of Antimicrobial Chemotherapy, 58(2), 332–337. https://doi.org/10.1093/jac/dkl227.

    Article  CAS  PubMed  Google Scholar 

  • Cho, H. Y., Cho, H. J., Kim, Y. M., Oh, J. I., & Kang, B. S. (2009). Structural insight into the heme-based redox sensing by DosS from Mycobacterium tuberculosis. The Journal of Biological Chemistry, 284(19), 13057–13067. https://doi.org/10.1074/jbc.M808905200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, H. Y., Cho, H. J., Kim, M. H., & Kang, B. S. (2011). Blockage of the channel to heme by the E87 side chain in the GAF domain of Mycobacterium tuberculosis DosS confers the unique sensitivity of DosS to oxygen. FEBS Letters, 585(12), 1873–1878. https://doi.org/10.1016/j.febslet.2011.04.050.

    Article  CAS  PubMed  Google Scholar 

  • Conlon, B. P., Nakayasu, E. S., Fleck, L. E., LaFleur, M. D., Isabella, V. M., Coleman, K., Leonard, S. N., Smith, R. D., Adkins, J. N., & Lewis, K. (2013). Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature, 503(7476), 365–370. https://doi.org/10.1038/nature12790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Converse, P. J., Karakousis, P. C., Klinkenberg, L. G., Kesavan, A. K., Ly, L. H., Allen, S. S., Grosset, J. H., Jain, S. K., Lamichhane, G., Manabe, Y. C., McMurray, D. N., Nuermberger, E. L., & Bishai, W. R. (2009). Role of the dosR-dosS two-component regulatory system in Mycobacterium tuberculosis virulence in three animal models. Infection and Immunity, 77(3), 1230–1237. https://doi.org/10.1128/IAI.01117-08.

    Article  CAS  PubMed  Google Scholar 

  • Cox, E., & Laessig, K. (2014). FDA approval of bedaquiline – The benefit-risk balance for drug-resistant tuberculosis. The New England Journal of Medicine, 371(8), 689–691. https://doi.org/10.1056/NEJMp1314385.

    Article  CAS  PubMed  Google Scholar 

  • Cyktor, J. C., Carruthers, B., Kominsky, R. A., Beamer, G. L., Stromberg, P., & Turner, J. (2013). IL-10 inhibits mature fibrotic granuloma formation during Mycobacterium tuberculosis infection. Journal of Immunology. https://doi.org/10.4049/jimmunol.1202722

    Article  CAS  PubMed  Google Scholar 

  • Daniel, J., Maamar, H., Deb, C., Sirakova, T. D., & Kolattukudy, P. E. (2011). Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathogens, 7(6), e1002093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dannenberg, A. M. (2006). Pathogenesis of human pulmonary tuberculosis: Insights from the rabbit model (pp. 1–453). Washington, DC: ASM Press.

    Google Scholar 

  • Deb, C., Lee, C. M., Dubey, V. S., Daniel, J., Abomoelak, B., Sirakova, T. D., Pawar, S., Rogers, L., & Kolattukudy, P. E. (2009). A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One, 4(6), e6077. https://doi.org/10.1371/journal.pone.0006077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driver, E. R., Ryan, G. J., Hoff, D. R., Irwin, S. M., Basaraba, R. J., Kramnik, I., & Lenaerts, A. J. (2012). Evaluation of a mouse model of necrotic granuloma formation using C3HeB/FeJ mice for testing of drugs against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 56(6), 3181–3195. https://doi.org/10.1128/AAC.00217-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Famulla, K., Sass, P., Malik, I., Akopian, T., Kandror, O., Alber, M., Hinzen, B., Ruebsamen-Schaeff, H., Kalscheuer, R., Goldberg, A. L., & Brotz-Oesterhelt, H. (2016). Acyldepsipeptide antibiotics kill mycobacteria by preventing the physiological functions of the ClpP1P2 protease. Molecular Microbiology, 101(2), 194–209. https://doi.org/10.1111/mmi.13362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farhana, A., Guidry, L., Srivastava, A., Singh, A., Hondalus, M. K., & Steyn, A. J. (2010). Reductive stress in microbes: Implications for understanding Mycobacterium tuberculosis disease and persistence. Advances in Microbial Physiology, 57, 43–117. https://doi.org/10.1016/B978-0-12-381045-8.00002-3.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, M. A., Plikaytis, B. B., & Shinnick, T. M. (2002). Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. Journal of Bacteriology, 184(14), 4025–4032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foss, M. H., Pou, S., Davidson, P. M., Dunaj, J. L., Winter, R. W., Pou, S., Licon, M. H., Doh, J. K., Li, Y., Kelly, J. X., Dodean, R. A., Koop, D. R., Riscoe, M. K., & Purdy, G. E. (2016). Diphenylether-modified 1,2-diamines with improved drug properties for development against Mycobacterium tuberculosis. ACS Infectious Diseases, 2(7), 500–508. https://doi.org/10.1021/acsinfecdis.6b00052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galagan, J. E., Minch, K., Peterson, M., Lyubetskaya, A., Azizi, E., Sweet, L., Gomes, A., Rustad, T., Dolganov, G., Glotova, I., Abeel, T., Mahwinney, C., Kennedy, A. D., Allard, R., Brabant, W., Krueger, A., Jaini, S., Honda, B., Yu, W. H., Hickey, M. J., Zucker, J., Garay, C., Weiner, B., Sisk, P., Stolte, C., Winkler, J. K., Van de Peer, Y., Iazzetti, P., Camacho, D., Dreyfuss, J., Liu, Y., Dorhoi, A., Mollenkopf, H. J., Drogaris, P., Lamontagne, J., Zhou, Y., Piquenot, J., Park, S. T., Raman, S., Kaufmann, S. H., Mohney, R. P., Chelsky, D., Moody, D. B., Sherman, D. R., & Schoolnik, G. K. (2013). The Mycobacterium tuberculosis regulatory network and hypoxia. Nature, 499(7457), 178–183. https://doi.org/10.1038/nature12337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garton, N. J., Waddell, S. J., Sherratt, A. L., Lee, S. M., Smith, R. J., Senner, C., Hinds, J., Rajakumar, K., Adegbola, R. A., Besra, G. S., Butcher, P. D., & Barer, M. R. (2008). Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Medicine, 5(4), 634–645.

    Article  CAS  Google Scholar 

  • Gautam, U. S., McGillivray, A., Mehra, S., Didier, P. J., Midkiff, C. C., Kissee, R. S., Golden, N. A., Alvarez, X., Niu, T., Rengarajan, J., Sherman, D. R., & Kaushal, D. (2015). DosS is required for the complete virulence of Mycobacterium tuberculosis in mice with classical granulomatous lesions. American Journal of Respiratory Cell and Molecular Biology, 52(6), 708–716. https://doi.org/10.1165/rcmb.2014-0230OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavrish, E., Sit, C. S., Cao, S., Kandror, O., Spoering, A., Peoples, A., Ling, L., Fetterman, A., Hughes, D., Bissell, A., Torrey, H., Akopian, T., Mueller, A., Epstein, S., Goldberg, A., Clardy, J., & Lewis, K. (2014). Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chemistry & Biology, 21(4), 509–518. https://doi.org/10.1016/j.chembiol.2014.01.014.

    Article  CAS  Google Scholar 

  • Gengenbacher, M., & Kaufmann, S. H. (2012). Mycobacterium tuberculosis: Success through dormancy. FEMS Microbiology Reviews, 36(3), 514–532. https://doi.org/10.1111/j.1574-6976.2012.00331.x.

    Article  CAS  PubMed  Google Scholar 

  • Gengenbacher, M., Rao, S. P., Pethe, K., & Dick, T. (2010). Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology, 156(Pt 1), 81–87. https://doi.org/10.1099/mic.0.033084-0.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, S. E. R., Harrison, J., & Cox, J. A. G. (2018) Modelling a silent epidemic: A review of the in vitro models of latent tuberculosis. Pathogens, 7(4). https://doi.org/10.3390/pathogens7040088

    Article  PubMed Central  Google Scholar 

  • Gill, W. P., Harik, N. S., Whiddon, M. R., Liao, R. P., Mittler, J. E., & Sherman, D. R. (2009). A replication clock for Mycobacterium tuberculosis. Nature Medicine, 15(2), 211–214. https://doi.org/10.1038/nm.1915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gold, B., & Nathan, C. (2017a). Targeting phenotypically tolerant Mycobacterium tuberculosis. Microbiology Spectrum, 5(1). https://doi.org/10.1128/microbiolspec.TBTB2-0031-2016

  • Gold, B., & Nathan, C. (2017b). Targeting phenotypically tolerant Mycobacterium tuberculosis. Microbiology Spectrum, 5(1), TBTB2-0031- 2016. https://doi.org/10.1128/microbiolspec.TBTB2-0031-2016.

    Article  Google Scholar 

  • Gold, B., Warrier, T., & Nathan, C. (2015). A multi-stress model for high throughput screening against non-replicating Mycobacterium tuberculosis. Methods in Molecular Biology, 1285, 293–315. https://doi.org/10.1007/978-1-4939-2450-9_18.

    Article  CAS  PubMed  Google Scholar 

  • Grant, S. S., Kaufmann, B. B., Chand, N. S., Haseley, N., & Hung, D. T. (2012). Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proceedings of the National Academy of Sciences of the United States of America, 109(30), 12147–12152. https://doi.org/10.1073/pnas.1203735109.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grzegorzewicz, A. E., Pham, H., Gundi, V. A., Scherman, M. S., North, E. J., Hess, T., Jones, V., Gruppo, V., Born, S. E., Kordulakova, J., Chavadi, S. S., Morisseau, C., Lenaerts, A. J., Lee, R. E., McNeil, M. R., & Jackson, M. (2012). Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nature Chemical Biology, 8(4), 334–341. https://doi.org/10.1038/nchembio.794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrini, V., Prideaux, B., Blanc, L., Bruiners, N., Arrigucci, R., Singh, S., Ho-Liang, H. P., Salamon, H., Chen, P. Y., Lakehal, K., Subbian, S., O’Brien, P., Via, L. E., Barry, C. E., 3rd, Dartois, V., & Gennaro, M. L. (2018). Storage lipid studies in tuberculosis reveal that foam cell biogenesis is disease-specific. PLoS Pathogens, 14(8), e1007223. https://doi.org/10.1371/journal.ppat.1007223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta, R. K., Thakur, T. S., Desiraju, G. R., & Tyagi, J. S. (2009). Structure-based design of DevR inhibitor active against nonreplicating Mycobacterium tuberculosis. Journal of Medicinal Chemistry, 52(20), 6324–6334. https://doi.org/10.1021/jm900358q.

    Article  CAS  PubMed  Google Scholar 

  • Harper, J., Skerry, C., Davis, S. L., Tasneen, R., Weir, M., Kramnik, I., Bishai, W. R., Pomper, M. G., Nuermberger, E. L., & Jain, S. K. (2012). Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. The Journal of Infectious Diseases, 205(4), 595–602. https://doi.org/10.1093/infdis/jir786.

    Article  CAS  PubMed  Google Scholar 

  • Hobby, G. L., Meyer, K., & Chaffee, E. (1942). Observations on the mechanism of action of penicillin. Proceedings of the Society for Experimental Biology and Medicine, 50(2), 281–285. https://doi.org/10.3181/00379727-50-13773.

    Article  CAS  Google Scholar 

  • Hudock, T. A., Foreman, T. W., Bandyopadhyay, N., Gautam, U. S., Veatch, A. V., LoBato, D. N., Gentry, K. M., Golden, N. A., Cavigli, A., Mueller, M., Hwang, S. A., Hunter, R. L., Alvarez, X., Lackner, A. A., Bader, J. S., Mehra, S., & Kaushal, D. (2017). Hypoxia sensing and persistence genes are expressed during the intragranulomatous survival of Mycobacterium tuberculosis. American Journal of Respiratory Cell and Molecular Biology, 56(5), 637–647. https://doi.org/10.1165/rcmb.2016-0239OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurdle, J. G., O’Neill, A. J., Chopra, I., & Lee, R. E. (2011). Targeting bacterial membrane function: An underexploited mechanism for treating persistent infections. Nature Reviews. Microbiology, 9(1), 62–75. https://doi.org/10.1038/nrmicro2474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutter, R., Keller-Schierlein, W., Knusel, F., Prelog, V., Rodgers, G. C., Jr., Suter, P., Vogel, G., Voser, W., & Zahner, H. (1967). The metabolic products of microorganisms. Boromycin. Helvetica Chimica Acta, 50(6), 1533–1539. https://doi.org/10.1002/hlca.19670500612.

    Article  CAS  PubMed  Google Scholar 

  • Ioanoviciu, A., Yukl, E. T., Moenne-Loccoz, P., & de Montellano, P. R. (2007). DevS, a heme-containing two-component oxygen sensor of Mycobacterium tuberculosis. Biochemistry, 46(14), 4250–4260. https://doi.org/10.1021/bi602422p.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, B. K., & Abramovitch, R. B. (2017). Small molecules that sabotage bacterial virulence. Trends in Pharmacological Sciences, 38(4), 339–362. https://doi.org/10.1016/j.tips.2017.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, B. K., Colvin, C. J., Needle, D. B., Mba Medie, F., Champion, P. A., & Abramovitch, R. B. (2015). The carbonic anhydrase inhibitor ethoxzolamide inhibits the Mycobacterium tuberculosis PhoPR regulon and Esx-1 secretion and attenuates virulence. Antimicrobial Agents and Chemotherapy, 59(8), 4436–4445. https://doi.org/10.1128/AAC.00719-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalia, N. P., Hasenoehrl, E. J., Ab Rahman, N. B., Koh, V. H., Ang, M. L. T., Sajorda, D. R., Hards, K., Gruber, G., Alonso, S., Cook, G. M., Berney, M., & Pethe, K. (2017). Exploiting the synthetic lethality between terminal respiratory oxidases to kill Mycobacterium tuberculosis and clear host infection. Proceedings of the National Academy of Sciences of the United States of America, 114(28), 7426–7431. https://doi.org/10.1073/pnas.1706139114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur, K., Taneja, N. K., Dhingra, S., & Tyagi, J. S. (2014). DevR (DosR) mimetic peptides impair transcriptional regulation and survival of Mycobacterium tuberculosis under hypoxia by inhibiting the autokinase activity of DevS sensor kinase. BMC Microbiology, 14(195), 1–9. https://doi.org/10.1186/1471-2180-14-195.

    Article  CAS  Google Scholar 

  • Kempker, R. R., Heinrichs, M. T., Nikolaishvili, K., Sabulua, I., Bablishvili, N., Gogishvili, S., Avaliani, Z., Tukvadze, N., Little, B., Bernheim, A., Read, T. D., Guarner, J., Derendorf, H., Peloquin, C. A., Blumberg, H. M., & Vashakidze, S. (2017). Lung tissue concentrations of pyrazinamide among patients with drug-resistant pulmonary tuberculosis. Antimicrobial Agents and Chemotherapy, 61(6). https://doi.org/10.1128/AAC.00226-17

  • Kint, C. I., Verstraeten, N., Fauvart, M., & Michiels, J. (2012). New-found fundamentals of bacterial persistence. Trends in Microbiology, 20(12), 577–585. https://doi.org/10.1016/j.tim.2012.08.009.

    Article  CAS  PubMed  Google Scholar 

  • Kramnik, I., Demant, P., & Bloom, B. B. (1998). Susceptibility to tuberculosis as a complex genetic trait: Analysis using recombinant congenic strains of mice. Novartis Foundation Symposium, 217, 120–131; discussion 132-127.

    Article  CAS  PubMed  Google Scholar 

  • Kramnik, I., Dietrich, W. F., Demant, P., & Bloom, B. R. (2000). Genetic control of resistance to experimental infection with virulent Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 97(15), 8560–8565. https://doi.org/10.1073/pnas.150227197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishna, S., Bustamante, L., Haynes, R. K., & Staines, H. M. (2008). Artemisinins: Their growing importance in medicine. Trends in Pharmacological Sciences, 29(10), 520–527. https://doi.org/10.1016/j.tips.2008.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, A., Toledo, J. C., Patel, R. P., Lancaster, J. R., Jr., & Steyn, A. J. (2007). Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proceedings of the National Academy of Sciences of the United States of America, 104(28), 11568–11573. https://doi.org/10.1073/pnas.0705054104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurthkoti, K., Amin, H., Marakalala, M. J., Ghanny, S., Subbian, S., Sakatos, A., Livny, J., Fortune, S. M., Berney, M., & Rodriguez, G. M. (2017). The capacity of Mycobacterium tuberculosis to survive iron starvation might enable it to persist in iron-deprived microenvironments of human granulomas. mBio, 8(4). https://doi.org/10.1128/mBio.01092-17

  • Lanoix, J. P., Ioerger, T., Ormond, A., Kaya, F., Sacchettini, J., Dartois, V., & Nuermberger, E. (2016). Selective inactivity of pyrazinamide against tuberculosis in C3HeB/FeJ mice is best explained by neutral pH of caseum. Antimicrobial Agents and Chemotherapy, 60(2), 735–743. https://doi.org/10.1128/AAC.01370-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leistikow, R. L., Morton, R. A., Bartek, I. L., Frimpong, I., Wagner, K., & Voskuil, M. I. (2010). The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. Journal of Bacteriology, 192(6), 1662–1670. https://doi.org/10.1128/JB.00926-09.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, K. (2007). Persister cells, dormancy and infectious disease. Nature Reviews Microbiology, 5(1), 48–56. https://doi.org/10.1038/nrmicro1557.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Upadhyay, A., Fontes, F. L., North, E. J., Wang, Y., Crans, D. C., Grzegorzewicz, A. E., Jones, V., Franzblau, S. G., Lee, R. E., Crick, D. C., & Jackson, M. (2014). Novel insights into the mechanism of inhibition of MmpL3, a target of multiple pharmacophores in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 58(11), 6413–6423. https://doi.org/10.1128/AAC.03229-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, P. L., Dartois, V., Johnston, P. J., Janssen, C., Via, L., Goodwin, M. B., Klein, E., Barry, C. E., 3rd, & Flynn, J. L. (2012). Metronidazole prevents reactivation of latent Mycobacterium tuberculosis infection in macaques. Proceedings of the National Academy of Sciences of the United States of America, 109(35), 14188–14193. https://doi.org/10.1073/pnas.1121497109.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Tan, S., Huang, L., Abramovitch, R. B., Rohde, K. H., Zimmerman, M. D., Chen, C., Dartois, V., VanderVen, B. C., & Russell, D. G. (2016). Immune activation of the host cell induces drug tolerance in Mycobacterium tuberculosis both in vitro and in vivo. The Journal of Experimental Medicine, 213(5), 809–825. https://doi.org/10.1084/jem.20151248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loebel, R. O., Shorr, E., & Richardson, H. B. (1933). The influence of adverse conditions upon the respiratory metabolism and growth of human tubercle bacilli. Journal of Bacteriology, 26(2), 167–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacGilvary, N. J., & Tan, S. (2018). Fluorescent Mycobacterium tuberculosis reporters: Illuminating host-pathogen interactions. Pathogens and Disease, 76(3). https://doi.org/10.1093/femspd/fty017.

  • Mak, P. A., Rao, S. P., Ping Tan, M., Lin, X., Chyba, J., Tay, J., Ng, S. H., Tan, B. H., Cherian, J., Duraiswamy, J., Bifani, P., Lim, V., Lee, B. H., Ling Ma, N., Beer, D., Thayalan, P., Kuhen, K., Chatterjee, A., Supek, F., Glynne, R., Zheng, J., Boshoff, H. I., Barry, C. E., 3rd, Dick, T., Pethe, K., & Camacho, L. R. (2012). A high-throughput screen to identify inhibitors of ATP homeostasis in non-replicating Mycobacterium tuberculosis. ACS Chemical Biology, 7(7), 1190–1197. https://doi.org/10.1021/cb2004884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malhotra, V., Sharma, D., Ramanathan, V. D., Shakila, H., Saini, D. K., Chakravorty, S., Das, T. K., Li, Q., Silver, R. F., Narayanan, P. R., & Tyagi, J. S. (2004). Disruption of response regulator gene, devR, leads to attenuation in virulence of Mycobacterium tuberculosis. FEMS Microbiology Letters, 231(2), 237–245. https://doi.org/10.1016/S0378-1097(04)00002-3.

    Article  CAS  PubMed  Google Scholar 

  • Manzanillo, P. S., Shiloh, M. U., Portnoy, D. A., & Cox, J. S. (2012). Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host & Microbe, 11(5), 469–480. https://doi.org/10.1016/j.chom.2012.03.007.

    Article  CAS  Google Scholar 

  • Marakalala, M. J., Raju, R. M., Sharma, K., Zhang, Y. J., Eugenin, E. A., Prideaux, B., Daudelin, I. B., Chen, P. Y., Booty, M. G., Kim, J. H., Eum, S. Y., Via, L. E., Behar, S. M., Barry, C. E., 3rd, Mann, M., Dartois, V., & Rubin, E. J. (2016). Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nature Medicine, 22(5), 531–538. https://doi.org/10.1038/nm.4073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinney, J. D., Honer zu Bentrup, K., Munoz-Elias, E. J., Miczak, A., Chen, B., Chan, W. T., Swenson, D., Sacchettini, J. C., Jacobs, W. R., Jr., & Russell, D. G. (2000). Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature, 406(6797), 735–738.

    Article  CAS  PubMed  Google Scholar 

  • Mehra, S., Foreman, T. W., Didier, P. J., Ahsan, M. H., Hudock, T. A., Kissee, R., Golden, N. A., Gautam, U. S., Johnson, A. M., Alvarez, X., Russell-Lodrigue, K. E., Doyle, L. A., Roy, C. J., Niu, T., Blanchard, J. L., Khader, S. A., Lackner, A. A., Sherman, D. R., & Kaushal, D. (2015). The DosR regulon modulates adaptive immunity and is essential for Mycobacterium tuberculosis persistence. American Journal of Respiratory and Critical Care Medicine, 191(10), 1185–1196. https://doi.org/10.1164/rccm.201408-1502OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meunier, B., & Robert, A. (2010). Heme as trigger and target for trioxane-containing antimalarial drugs. Accounts of Chemical Research, 43(11), 1444–1451. https://doi.org/10.1021/ar100070k.

    Article  CAS  PubMed  Google Scholar 

  • Mikusova, K., Huang, H., Yagi, T., Holsters, M., Vereecke, D., D’Haeze, W., Scherman, M. S., Brennan, P. J., McNeil, M. R., & Crick, D. C. (2005). Decaprenylphosphoryl arabinofuranose, the donor of the D-arabinofuranosyl residues of mycobacterial arabinan, is formed via a two-step epimerization of decaprenylphosphoryl ribose. Journal of Bacteriology, 187(23), 8020–8025. https://doi.org/10.1128/jb.187.23.8020-8025.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira, W., Ngan, G. J., Low, J. L., Poulsen, A., Chia, B. C., Ang, M. J., Yap, A., Fulwood, J., Lakshmanan, U., Lim, J., Khoo, A. Y., Flotow, H., Hill, J., Raju, R. M., Rubin, E. J., & Dick, T. (2015). Target mechanism-based whole-cell screening identifies bortezomib as an inhibitor of caseinolytic protease in mycobacteria. mBio, 6(3), e00253–e00215. https://doi.org/10.1128/mBio.00253-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira, W., Aziz, D. B., & Dick, T. (2016). Boromycin kills mycobacterial persisters without detectable resistance. Frontiers in Microbiology, 7(199), 1–7. https://doi.org/10.3389/fmicb.2016.00199.

    Article  Google Scholar 

  • Moreira, W., Santhanakrishnan, S., Dymock, B. W., & Dick, T. (2017a). Bortezomib warhead-switch confers dual activity against mycobacterial caseinolytic protease and proteasome and selectivity against human proteasome. Frontiers in Microbiology, 8(746), 1–6. https://doi.org/10.3389/fmicb.2017.00746.

    Article  Google Scholar 

  • Moreira, W., Santhanakrishnan, S., Ngan, G. J. Y., Low, C. B., Sangthongpitag, K., Poulsen, A., Dymock, B. W., & Dick, T. (2017b). Towards selective mycobacterial ClpP1P2 inhibitors with reduced activity against the human proteasome. Antimicrobial Agents and Chemotherapy, 61(5), e02307–e02316. https://doi.org/10.1128/aac.02307-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller, A., Wenzel, M., Strahl, H., Grein, F., Saaki, T. N. V., Kohl, B., Siersma, T., Bandow, J. E., Sahl, H. G., Schneider, T., & Hamoen, L. W. (2016). Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proceedings of the National Academy of Sciences of the United States of America, 113(45), E7077–E7086. https://doi.org/10.1073/pnas.1611173113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz-Elias, E. J., Timm, J., Botha, T., Chan, W. T., Gomez, J. E., & McKinney, J. D. (2005). Replication dynamics of Mycobacterium tuberculosis in chronically infected mice. Infection and Immunity, 73(1), 546–551. https://doi.org/10.1128/IAI.73.1.546-551.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathan, C. (2012). Fresh approaches to anti-infective therapies. Science Translational Medicine, 4(140), 140sr142. https://doi.org/10.1126/scitranslmed.3003081.

    Article  CAS  Google Scholar 

  • Neres, J., Hartkoorn, R. C., Chiarelli, L. R., Gadupudi, R., Pasca, M. R., Mori, G., Venturelli, A., Savina, S., Makarov, V., Kolly, G. S., Molteni, E., Binda, C., Dhar, N., Ferrari, S., Brodin, P., Delorme, V., Landry, V., de Jesus Lopes Ribeiro, A. L., Farina, D., Saxena, P., Pojer, F., Carta, A., Luciani, R., Porta, A., Zanoni, G., De Rossi, E., Costi, M. P., Riccardi, G., & Cole, S. T. (2015). 2-Carboxyquinoxalines kill Mycobacterium tuberculosis through noncovalent inhibition of DprE1. ACS Chemical Biology, 10(3), 705–714. https://doi.org/10.1021/cb5007163.

    Article  CAS  PubMed  Google Scholar 

  • Ohno, H., Zhu, G., Mohan, V. P., Chu, D., Kohno, S., Jacobs, W. R., Jr., & Chan, J. (2003). The effects of reactive nitrogen intermediates on gene expression in Mycobacterium tuberculosis. Cellular Microbiology, 5(9), 637–648.

    Article  CAS  PubMed  Google Scholar 

  • Ollinger, J., O’Malley, T., Kesicki, E. A., Odingo, J., & Parish, T. (2012). Validation of the essential ClpP protease in Mycobacterium tuberculosis as a novel drug target. Journal of Bacteriology, 194(3), 663–668. https://doi.org/10.1128/JB.06142-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pache, W. (1975). Boromycin. In J. W. Corcoran & F. E. Hahn (Eds.), Antibiotics. Vol. III Mechanism of action of antimicrobial and antitumor agents (pp. 585–587). Berlin: Springer.

    Google Scholar 

  • Panda, M., Ramachandran, S., Ramachandran, V., Shirude, P. S., Humnabadkar, V., Nagalapur, K., Sharma, S., Kaur, P., Guptha, S., Narayan, A., Mahadevaswamy, J., Ambady, A., Hegde, N., Rudrapatna, S. S., Hosagrahara, V. P., Sambandamurthy, V. K., & Raichurkar, A. (2014). Discovery of pyrazolopyridones as a novel class of noncovalent DprE1 inhibitor with potent anti-mycobacterial activity. Journal of Medicinal Chemistry, 57(11), 4761–4771. https://doi.org/10.1021/jm5002937.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, A. K., & Sassetti, C. M. (2008). Mycobacterial persistence requires the utilization of host cholesterol. Proceedings of the National Academy of Sciences of the United States of America, 105(11), 4376–4380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, H. D., Guinn, K. M., Harrell, M. I., Liao, R., Voskuil, M. I., Tompa, M., Schoolnik, G. K., & Sherman, D. R. (2003). Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Molecular Microbiology, 48(3), 833–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peddireddy, V., Doddam, S. N., & Ahmed, N. (2017). Mycobacterial dormancy systems and host responses in tuberculosis. Frontiers in Immunology, 8, 84. https://doi.org/10.3389/fimmu.2017.00084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pethe, K., Bifani, P., Jang, J., Kang, S., Park, S., Ahn, S., Jiricek, J., Jung, J., Jeon, H. K., Cechetto, J., Christophe, T., Lee, H., Kempf, M., Jackson, M., Lenaerts, A. J., Pham, H., Jones, V., Seo, M. J., Kim, Y. M., Seo, M., Seo, J. J., Park, D., Ko, Y., Choi, I., Kim, R., Kim, S. Y., Lim, S., Yim, S. A., Nam, J., Kang, H., Kwon, H., Oh, C. T., Cho, Y., Jang, Y., Kim, J., Chua, A., Tan, B. H., Nanjundappa, M. B., Rao, S. P., Barnes, W. S., Wintjens, R., Walker, J. R., Alonso, S., Lee, S., Kim, J., Oh, S., Oh, T., Nehrbass, U., Han, S. J., No, Z., Lee, J., Brodin, P., Cho, S. N., Nam, K., & Kim, J. (2013). Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nature Medicine, 19(9), 1157–1160. https://doi.org/10.1038/nm.3262.

    Article  CAS  PubMed  Google Scholar 

  • Piddington, D. L., Kashkouli, A., & Buchmeier, N. A. (2000). Growth of Mycobacterium tuberculosis in a defined medium is very restricted by acid pH and Mg2+ levels. Infection and Immunity, 68(8), 4518–4522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podust, L. M., Ioanoviciu, A., & Ortiz de Montellano, P. R. (2008). 2.3 A X-ray structure of the heme-bound GAF domain of sensory histidine kinase DosT of Mycobacterium tuberculosis. Biochemistry, 47(47), 12523–12531. https://doi.org/10.1021/bi8012356.

    Article  CAS  PubMed  Google Scholar 

  • Portaels, F., & Pattyn, S. R. (1982). Growth of mycobacteria in relation to the pH of the medium. Annals of Microbiology (Paris), 133(2), 213–221.

    CAS  Google Scholar 

  • Prideaux, B., Via, L. E., Zimmerman, M. D., Eum, S., Sarathy, J., O’Brien, P., Chen, C., Kaya, F., Weiner, D. M., Chen, P. Y., Song, T., Lee, M., Shim, T. S., Cho, J. S., Kim, W., Cho, S. N., Olivier, K. N., Barry, C. E., 3rd, & Dartois, V. (2015). The association between sterilizing activity and drug distribution into tuberculosis lesions. Nature Medicine, 21(10), 1223–1227. https://doi.org/10.1038/nm.3937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Primm, T. P., Andersen, S. J., Mizrahi, V., Avarbock, D., Rubin, H., & Barry, C. E., 3rd. (2000). The stringent response of Mycobacterium tuberculosis is required for long-term survival. Journal of Bacteriology, 182(17), 4889–4898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao, S. P., Alonso, S., Rand, L., Dick, T., & Pethe, K. (2008). The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 11945–11950. https://doi.org/10.1073/pnas.0711697105.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts, D. M., Liao, R. P., Wisedchaisri, G., Hol, W. G., & Sherman, D. R. (2004). Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis. The Journal of Biological Chemistry, 279(22), 23082–23087. https://doi.org/10.1074/jbc.M401230200.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues Felix, C., Gupta, R., Geden, S., Roberts, J., Winder, P., Pomponi, S. A., Diaz, M. C., Reed, J. K., Wright, A. E., & Rohde, K. H. (2017). Selective killing of dormant Mycobacterium tuberculosis by marine natural products. Antimicrobial Agents and Chemotherapy, 61(8). https://doi.org/10.1128/AAC.00743-17

  • Rohde, K., Yates, R. M., Purdy, G. E., & Russell, D. G. (2007a). Mycobacterium tuberculosis and the environment within the phagosome. Immunological Reviews, 219, 37–54.

    Article  CAS  PubMed  Google Scholar 

  • Rohde, K. H., Abramovitch, R. B., & Russell, D. G. (2007b). Mycobacterium tuberculosis invasion of macrophages: Linking bacterial gene expression to environmental cues. Cell Host & Microbe, 2(5), 352–364.

    Article  CAS  Google Scholar 

  • Russell, D. G. (2007). Who puts the tubercle in tuberculosis? Nature Reviews. Microbiology, 5(1), 39–47.

    Article  CAS  PubMed  Google Scholar 

  • Rustad, T. R., Harrell, M. I., Liao, R., & Sherman, D. R. (2008). The enduring hypoxic response of Mycobacterium tuberculosis. PLoS One, 3(1), e1502. https://doi.org/10.1371/journal.pone.0001502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rustad, T. R., Sherrid, A. M., Minch, K. J., & Sherman, D. R. (2009). Hypoxia: A window into Mycobacterium tuberculosis latency. Cellular Microbiology, 11(8), 1151–1159. https://doi.org/10.1111/j.1462-5822.2009.01325.x.

    Article  CAS  PubMed  Google Scholar 

  • Saini, D. K., Malhotra, V., & Tyagi, J. S. (2004a). Cross talk between DevS sensor kinase homologue, Rv2027c, and DevR response regulator of Mycobacterium tuberculosis. FEBS Letters, 565(1–3), 75–80. https://doi.org/10.1016/j.febslet.2004.02.092.

    Article  CAS  PubMed  Google Scholar 

  • Saini, D. K., Malhotra, V., Dey, D., Pant, N., Das, T. K., & Tyagi, J. S. (2004b). DevR-DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR. Microbiology, 150(Pt 4), 865–875. https://doi.org/10.1099/mic.0.26218-0.

    Article  CAS  PubMed  Google Scholar 

  • Sarathy, J. P., Via, L. E., Weiner, D., Blanc, L., Boshoff, H., Eugenin, E. A., Barry, C. E., 3rd, & Dartois, V. A. (2018). Extreme drug tolerance of Mycobacterium tuberculosis in caseum. Antimicrobial Agents and Chemotherapy, 62(2). https://doi.org/10.1128/AAC.02266-17.

  • Sardiwal, S., Kendall, S. L., Movahedzadeh, F., Rison, S. C., Stoker, N. G., & Djordjevic, S. (2005). A GAF domain in the hypoxia/NO-inducible Mycobacterium tuberculosis DosS protein binds haem. Journal of Molecular Biology, 353(5), 929–936. https://doi.org/10.1016/j.jmb.2005.09.011.

    Article  CAS  PubMed  Google Scholar 

  • Sauer, U., & Eikmanns, B. J. (2005). The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiology Reviews, 29(4), 765–794. https://doi.org/10.1016/j.femsre.2004.11.002.

    Article  CAS  PubMed  Google Scholar 

  • Shirude, P. S., Shandil, R., Sadler, C., Naik, M., Hosagrahara, V., Hameed, S., Shinde, V., Bathula, C., Humnabadkar, V., Kumar, N., Reddy, J., Panduga, V., Sharma, S., Ambady, A., Hegde, N., Whiteaker, J., McLaughlin, R. E., Gardner, H., Madhavapeddi, P., Ramachandran, V., Kaur, P., Narayan, A., Guptha, S., Awasthy, D., Narayan, C., Mahadevaswamy, J., Vishwas, K. G., Ahuja, V., Srivastava, A., Prabhakar, K. R., Bharath, S., Kale, R., Ramaiah, M., Choudhury, N. R., Sambandamurthy, V. K., Solapure, S., Iyer, P. S., Narayanan, S., & Chatterji, M. (2013). Azaindoles: Noncovalent DprE1 inhibitors from scaffold morphing efforts, kill Mycobacterium tuberculosis and are efficacious in vivo. Journal of Medicinal Chemistry, 56(23), 9701–9708. https://doi.org/10.1021/jm401382v.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R., Manjunatha, U., Boshoff, H. I., Ha, Y. H., Niyomrattanakit, P., Ledwidge, R., Dowd, C. S., Lee, I. Y., Kim, P., Zhang, L., Kang, S., Keller, T. H., Jiricek, J., & Barry, C. E., 3rd. (2008). PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science, 322(5906), 1392–1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivaramakrishnan, S., & de Montellano, P. R. (2013). The DosS-DosT/DosR mycobacterial sensor system. Biosensors, 3(3), 259–282. https://doi.org/10.3390/bios3030259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohaskey, C. D. (2008). Nitrate enhances the survival of Mycobacterium tuberculosis during inhibition of respiration. Journal of Bacteriology, 190(8), 2981–2986. https://doi.org/10.1128/JB.01857-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa, E. H., Tuckerman, J. R., Gonzalez, G., & Gilles-Gonzalez, M. A. (2007). DosT and DevS are oxygen-switched kinases in Mycobacterium tuberculosis. Protein Science: A Publication of the Protein Society, 16(8), 1708–1719. https://doi.org/10.1110/ps.072897707.

    Article  CAS  Google Scholar 

  • Sturgill-Koszycki, S., Schaible, U. E., & Russell, D. G. (1996). Mycobacterium-containing phagosomes are accessible to early endosomes and reflect a transitional state in normal phagosome biogenesis. The EMBO Journal, 15(24), 6960–6968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukheja, P., Kumar, P., Mittal, N., Li, S. G., Singleton, E., Russo, R., Perryman, A. L., Shrestha, R., Awasthi, D., Husain, S., Soteropoulos, P., Brukh, R., Connell, N., Freundlich, J. S., & Alland, D. (2017). A novel small-molecule inhibitor of the Mycobacterium tuberculosis demethylmenaquinone methyltransferase MenG is bactericidal to both growing and nutritionally deprived persister cells. mBio, 8(1), e02022-02016. https://doi.org/10.1128/mBio.02022-16.

    Article  Google Scholar 

  • Swallow, C. J., Rotstein, O. D., & Grinstein, S. (1989). Mechanisms of cytoplasmic pH recovery in acid-loaded macrophages. The Journal of Surgical Research, 46(6), 588–592.

    Article  CAS  PubMed  Google Scholar 

  • Tahlan, K., Wilson, R., Kastrinsky, D. B., Arora, K., Nair, V., Fischer, E., Barnes, S. W., Walker, J. R., Alland, D., Barry, C. E., 3rd, & Boshoff, H. I. (2012). SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 56(4), 1797–1809. https://doi.org/10.1128/AAC.05708-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, M. P., Sequeira, P., Lin, W. W., Phong, W. Y., Cliff, P., Ng, S. H., Lee, B. H., Camacho, L., Schnappinger, D., Ehrt, S., Dick, T., Pethe, K., & Alonso, S. (2010). Nitrate respiration protects hypoxic Mycobacterium tuberculosis against acid- and reactive nitrogen species stresses. PLoS One, 5(10), e13356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taneja, N. K., Dhingra, S., Mittal, A., Naresh, M., & Tyagi, J. S. (2010). Mycobacterium tuberculosis transcriptional adaptation, growth arrest and dormancy phenotype development is triggered by vitamin C. PLoS One, 5(5), e10860. https://doi.org/10.1371/journal.pone.0010860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Wel, N., Hava, D., Houben, D., Fluitsma, D., van Zon, M., Pierson, J., Brenner, M., & Peters, P. J. (2007). M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell, 129(7), 1287–1298. https://doi.org/10.1016/j.cell.2007.05.059.

    Article  CAS  PubMed  Google Scholar 

  • Vandal, O. H., Pierini, L. M., Schnappinger, D., Nathan, C. F., & Ehrt, S. (2008). A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nature Medicine, 14(8), 849–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VanderVen, B. C., Fahey, R. J., Lee, W., Liu, Y., Abramovitch, R. B., Memmott, C., Crowe, A. M., Eltis, L. D., Perola, E., Deininger, D. D., Wang, T., Locher, C. P., & Russell, D. G. (2015). Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium’s metabolism is constrained by the intracellular environment. PLoS Pathogens, 11(2), e1004679. https://doi.org/10.1371/journal.ppat.1004679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Via, L. E., Lin, P. L., Ray, S. M., Carrillo, J., Allen, S. S., Eum, S. Y., Taylor, K., Klein, E., Manjunatha, U., Gonzales, J., Lee, E. G., Park, S. K., Raleigh, J. A., Cho, S. N., McMurray, D. N., Flynn, J. L., & Barry, C. E., 3rd. (2008). Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infection and Immunity, 76(6), 2333–2340. https://doi.org/10.1128/IAI.01515-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Via, L. E., England, K., Weiner, D. M., Schimel, D., Zimmerman, M. D., Dayao, E., Chen, R. Y., Dodd, L. E., Richardson, M., Robbins, K. K., Cai, Y., Hammoud, D., Herscovitch, P., Dartois, V., Flynn, J. L., & Barry, C. E., 3rd. (2015). A sterilizing tuberculosis treatment regimen is associated with faster clearance of bacteria in cavitary lesions in marmosets. Antimicrobial Agents and Chemotherapy, 59(7), 4181–4189. https://doi.org/10.1128/AAC.00115-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilcheze, C., Baughn, A. D., Tufariello, J., Leung, L. W., Kuo, M., Basler, C. F., Alland, D., Sacchettini, J. C., Freundlich, J. S., & Jacobs, W. R., Jr. (2011). Novel inhibitors of InhA efficiently kill Mycobacterium tuberculosis under aerobic and anaerobic conditions. Antimicrobial Agents and Chemotherapy, 55(8), 3889–3898. https://doi.org/10.1128/aac.00266-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilcheze, C., Hartman, T., Weinrick, B., & Jacobs, W. R., Jr. (2013). Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nature Communications, 4(1881), 1–10. https://doi.org/10.1038/ncomms2898.

    Article  CAS  Google Scholar 

  • Vilcheze, C., Hartman, T., Weinrick, B., Jain, P., Weisbrod, T. R., Leung, L. W., Freundlich, J. S., & Jacobs, W. R., Jr. (2017). Enhanced respiration prevents drug tolerance and drug resistance in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 114(17), 4495–4500. https://doi.org/10.1073/pnas.1704376114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vos, M. H., Bouzhir-Sima, L., Lambry, J. C., Luo, H., Eaton-Rye, J. J., Ioanoviciu, A., Ortiz de Montellano, P. R., & Liebl, U. (2012). Ultrafast ligand dynamics in the heme-based GAF sensor domains of the histidine kinases DosS and DosT from Mycobacterium tuberculosis. Biochemistry, 51(1), 159–166. https://doi.org/10.1021/bi201467c.

    Article  CAS  PubMed  Google Scholar 

  • Voskuil, M. I., Schnappinger, D., Visconti, K. C., Harrell, M. I., Dolganov, G. M., Sherman, D. R., & Schoolnik, G. K. (2003). Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. The Journal of Experimental Medicine, 198(5), 705–713. https://doi.org/10.1084/jem.20030205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters, S. B., Dubnau, E., Kolesnikova, I., Laval, F., Daffe, M., & Smith, I. (2006). The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Molecular Microbiology, 60(2), 312–330.

    Article  CAS  PubMed  Google Scholar 

  • Wang, F., Sambandan, D., Halder, R., Wang, J., Batt, S. M., Weinrick, B., Ahmad, I., Yang, P., Zhang, Y., Kim, J., Hassani, M., Huszar, S., Trefzer, C., Ma, Z., Kaneko, T., Mdluli, K. E., Franzblau, S., Chatterjee, A. K., Johnsson, K., Mikusova, K., Besra, G. S., Futterer, K., Robbins, S. H., Barnes, S. W., Walker, J. R., Jacobs, W. R., Jr., & Schultz, P. G. (2013). Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 110(27), E2510–E2517. https://doi.org/10.1073/pnas.1309171110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Zhang, C. J., Chia, W. N., Loh, C. C., Li, Z., Lee, Y. M., He, Y., Yuan, L. X., Lim, T. K., Liu, M., Liew, C. X., Lee, Y. Q., Zhang, J., Lu, N., Lim, C. T., Hua, Z. C., Liu, B., Shen, H. M., Tan, K. S., & Lin, Q. (2015). Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nature Communications, 6, 10111. https://doi.org/10.1038/ncomms10111.

    Article  CAS  PubMed  Google Scholar 

  • Warrier, T., Martinez-Hoyos, M., Marin-Amieva, M., Colmenarejo, G., Porras-De Francisco, E., Alvarez-Pedraglio, A. I., Fraile-Gabaldon, M. T., Torres-Gomez, P. A., Lopez-Quezada, L., Gold, B., Roberts, J., Ling, Y., Somersan-Karakaya, S., Little, D., Cammack, N., Nathan, C., & Mendoza-Losana, A. (2015). Identification of novel anti-mycobacterial compounds by screening a pharmaceutical small-molecule library against nonreplicating Mycobacterium tuberculosis. ACS Infectious Diseases, 1(12), 580–585. https://doi.org/10.1021/acsinfecdis.5b00025.

    Article  CAS  PubMed  Google Scholar 

  • Warrier, T., Kapilashrami, K., Argyrou, A., Ioerger, T. R., Little, D., Murphy, K. C., Nandakumar, M., Park, S., Gold, B., Mi, J., Zhang, T., Meiler, E., Rees, M., Somersan-Karakaya, S., Porras-De Francisco, E., Martinez-Hoyos, M., Burns-Huang, K., Roberts, J., Ling, Y., Rhee, K. Y., Mendoza-Losana, A., Luo, M., & Nathan, C. F. (2016). N-methylation of a bactericidal compound as a resistance mechanism in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 113(31), E4523–E4530. https://doi.org/10.1073/pnas.1606590113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe, S., Zimmermann, M., Goodwin, M. B., Sauer, U., Barry, C. E., 3rd, & Boshoff, H. I. (2011). Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathogens, 7(10), e1002287. https://doi.org/10.1371/journal.ppat.1002287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wayne, L. G., & Hayes, L. G. (1996). An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infection and Immunity, 64(6), 2062–2069.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wisedchaisri, G., Wu, M., Sherman, D. R., & Hol, W. G. (2008). Crystal structures of the response regulator DosR from Mycobacterium tuberculosis suggest a helix rearrangement mechanism for phosphorylation activation. Journal of Molecular Biology, 378(1), 227–242. https://doi.org/10.1016/j.jmb.2008.02.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, T., Moreira, W., Nyantakyi, S. A., Chen, H., Aziz, D. B., Go, M. L., & Dick, T. (2017). Amphiphilic indole derivatives as antimycobacterial agents: structure-activity relationships and membrane targeting properties. Journal of Medicinal Chemistry, 60(7), 2745–2763. https://doi.org/10.1021/acs.jmedchem.6b01530.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, H., Colvin, C. J., Johnson, B. K., Kirchhoff, P. D., Wilson, M., Jorgensen-Muga, K., Larsen, S. D., & Abramovitch, R. B. (2017). Inhibitors of Mycobacterium tuberculosis DosRST signaling and persistence. Nature Chemical Biology, 13(2), 218–225. https://doi.org/10.1038/nchembio.2259.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, H., Williams, J. T., Coulson, G. B., Haiderer, E. R., & Abramovitch, R. B. (2018a). HC2091 kills Mycobacterium tuberculosis by targeting the MmpL3 mycolic acid transporter. Antimicrobial Agents and Chemotherapy, 62(7). https://doi.org/10.1128/AAC.02459-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, H., Alewei, B., Ellsworth, E., & Abramovitch, R. (2018b). Inhibition of Mycobacterium tuberculosis DosRST two-component regulatory system signaling by targeting response regulator DNA binding and sensor kinase heme. bioRxiv. https://doi.org/10.1101/411793

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Abramovitch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, H., Abramovitch, R.B. (2019). Host–Pathogen Interactions Influencing Mycobacterium tuberculosis Persistence and Drug Tolerance. In: Lewis, K. (eds) Persister Cells and Infectious Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-25241-0_10

Download citation

Publish with us

Policies and ethics