Skip to main content

Microalgal Consortia: From Wastewater Treatment to Bioenergy Production

  • Chapter
  • First Online:
Grand Challenges in Algae Biotechnology

Abstract

Cultivation of microalgae has been the focus of several research studies worldwide, due to the huge potential of these photosynthetic microorganisms in a wide range of applications, namely environmental and biotechnological ones. Regarding environmental applications, these microorganisms can play an important role in CO2 uptake and wastewater treatment processes and can be used as raw materials for bioenergy production. However, cultivation of these microorganisms for these applications still faces some problems: (1) it is very difficult to maintain pure cultures of these microorganisms in wastewater treatment processes and (2) bioenergy production process using these microorganisms is still not economically viable. To face these challenges, several studies have reported the use of microalgal consortia. When using microalgal consortia, cooperative interactions can occur, enhancing biomass productivities and therefore nutrients uptake and lipids content. Additionally, these systems tend to be more resistant to environmental conditions’ oscillations, facilitating the overall production process. In this study, an overview on the use of microalgal consortia for CO2 capture, wastewater treatment and bioenergy production is provided, focusing on the interactions that can occur between these microorganisms and how they can improve these environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcántara C, Domínguez JM, García D et al (2015) Evaluation of wastewater treatment in a novel anoxic-aerobic algal-bacterial photobioreactor with biomass recycling through carbon and nitrogen mass balances. Bioresour Technol 191:173–186

    Article  PubMed  CAS  Google Scholar 

  • Allen MR, Frame DJ, Huntingford C et al (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458:1163–1166

    Article  CAS  PubMed  Google Scholar 

  • Andruleviciute V, Makareviciene V, Skorupskaite V et al (2014) Biomass and oil content of Chlorella sp., Haematococcus sp., Nannochloris sp. and Scenedesmus sp. under mixotrophic growth conditions in the presence of technical glycerol. J Appl Phycol 26:83–90

    Article  CAS  Google Scholar 

  • Anjos M, Fernandes BD, Vicente AA et al (2013) Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresour Technol 139:149–154

    Article  CAS  PubMed  Google Scholar 

  • Arbib Z, Ruiz J, Álvarez-Díaz P et al (2014) Capability of different microalgae species for phytoremediation processes: wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Water Res 49:465–474

    Article  CAS  PubMed  Google Scholar 

  • Arcila JS, Buitrón G (2017) Influence of solar irradiance levels on the formation of microalgae-bacteria aggregates for municipal wastewater treatment. Algal Res 27:190–197

    Article  Google Scholar 

  • Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70

    Article  Google Scholar 

  • Benemann JR, Koopman B, Weissman J et al (1980) Development of microalgae harvesting and high rate pond technologies in California. In: Shelef G, Soeder CJ (eds) Algae biomass production and use. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 457–495

    Google Scholar 

  • Bhakta JN, Lahiri S, Pittman JK et al (2015) Carbon dioxide sequestration in wastewater by a consortium of elevated carbon dioxide-tolerant microalgae. J CO2 Util 10:105–112

    Article  CAS  Google Scholar 

  • Bhalamurugan GL, Valerie O, Mark L (2018) Valuable bioproducts obtained from microalgal biomass and their commercial applications: a review. Environ Eng Res 23:229–241

    Article  Google Scholar 

  • Boonma S, Chaiklangmuang S, Chaiwongsar S et al (2014) Enhanced carbon dioxide fixation and bio-oil production of a microalgal consortium. Clean Soil Air Water 42:1–6

    Google Scholar 

  • Bordel S, Guieysse B, Muñoz R (2009) Mechanistic model for the reclamation of industrial wastewaters using algal-bacterial photobioreactors. Environ Sci Technol 43:3200–3207

    Article  CAS  PubMed  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Cembella AD (2003) Chemical ecology of eukaryotic microalgae in marine ecosystems. Phycologia 42:420–447

    Article  Google Scholar 

  • Cheah WY, Show PL, Chang J-S et al (2015) Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour Technol 184:190–201

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Zhang L, Chen H et al (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Pur Technol 50:324–329

    Article  CAS  Google Scholar 

  • Chiang C-L, Lee C-M, Chen P-C (2011) Utilization of the cyanobacteria Anabaena sp. CH1 in biological carbon dioxide mitigation processes. Bioresour Technol 102:5400–5405

    Article  CAS  PubMed  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW et al (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Chojnacka K, Chojnacki A, Górecka H (2004) Trace element removal by Spirulina sp. from copper smelter and refinery effluents. Hydrometallurgy 73:147–153

    Article  CAS  Google Scholar 

  • Choudhary P, Prajapati SK, Malik A (2016) Screening native microalgal consortia for biomass production and nutrient removal from rural wastewaters for bioenergy applications. Ecol Eng 91:221–230

    Article  Google Scholar 

  • Costa JAV, Henrard ASA, Moraes L et al (2017) Use of flue gas as a carbon source. In: Pires JCM (ed) Recent advances in renewable energy, microalgae as a source of bioenergy: products, processes and economics, vol 1. Bentham Science, Sharjah, pp 173–201

    Google Scholar 

  • Dayananda C, Sarada R, Rani MU et al (2007) Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenergy 31:87–93

    Article  CAS  Google Scholar 

  • De-Bashan LE, Hernandez J-P, Morey T et al (2004) Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res 38:466–474

    Article  CAS  PubMed  Google Scholar 

  • Demirbas A (2011) Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: a solution to pollution problems. Appl Energy 88:3541–3547

    Article  CAS  Google Scholar 

  • Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412

    Article  Google Scholar 

  • Fergola P, Cerasuolo M, Pollio A et al (2007) Allelopathy and competition between Chlorella vulgaris and Pseudokirchneriella subcapitata: experiments and mathematical model. Ecol Model 208:205–214

    Article  Google Scholar 

  • Foess GW, Steinbrecher P, Williams K et al (1998) Cost and performance evaluation of BNR processes. Flo Water Res J 11–13

    Google Scholar 

  • Foladori P, Petrini S, Nessenzia M et al (2018) Enhanced nitrogen removal and energy saving in a microalgal-bacterial consortium treating real municipal wastewater. Water Sci Technol 78:174–182

    CAS  PubMed  Google Scholar 

  • Fouilland E (2012) Biodiversity as a tool for waste phycoremediation and biomass production. Rev Environ Sci Biotechnol 11:1–4

    Article  Google Scholar 

  • Godos I, González C, Becares E et al (2009) Simultaneous nutrients and carbon removal during pretreated swine slurry degradation in a tubular biofilm photobioreactor. Appl Microbiol Biotechnol 82:187–194

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves AL, Pires JCM, Simões M (2016a) Biotechnological potential of Synechocystis salina co-cultures with selected microalgae and cyanobacteria: nutrients removal, biomass and lipid production. Bioresour Technol 200:279–286

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves AL, Pires JCM, Simões M (2016b) Wastewater polishing by consortia of Chlorella vulgaris and activated sludge native bacteria. J Clean Prod 133:348–357

    Article  CAS  Google Scholar 

  • Gonçalves AL, Pires JCM, Simões M (2017) A review on the use of microalgal consortia for wastewater treatment. Algal Res 24:403–415

    Article  Google Scholar 

  • González-Fernández C, Ballesteros M (2012) Microalgae autoflocculation: an alternative to high-energy consuming harvesting methods. J Appl Phycol 25:991–999

    Article  CAS  Google Scholar 

  • Gouveia L, Graça S, Sousa C et al (2016) Microalgae biomass production using wastewater: treatment and costs: scale-up considerations. Algal Res 16:167–176

    Article  Google Scholar 

  • Gross EM (2003) Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22:313–339

    Article  Google Scholar 

  • He P, Mao B, Lü F et al (2013) The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters. Bioresour Technol 146:562–568

    Article  CAS  PubMed  Google Scholar 

  • Hernández D, Riaño B, Coca M et al (2013) Treatment of agro-industrial wastewater using microalgae-bacteria consortium combined with anaerobic digestion of the produced biomass. Bioresour Technol 135:598–603

    Article  PubMed  CAS  Google Scholar 

  • Ho S-H, Chen W-M, Chang J-S (2010) Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour Technol 101:8725–8730

    Article  CAS  PubMed  Google Scholar 

  • Ho S-H, Chen C-Y, Lee D-J et al (2011) Perspectives on microalgal CO2-emission mitigation systems – a review. Biotechnol Adv 29:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hu Q (2004) Industrial production of microalgal cell-mass and secondary products – major industrial species. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 268–271

    Google Scholar 

  • Hulatt CJ, Thomas DN (2011) Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors. Bioresour Technol 102:5775–5787

    Article  CAS  PubMed  Google Scholar 

  • Jagmann N, Philipp P (2014) Reprint of design of synthetic microbial communities for biotechnological production processes. J Biotechnol 192:293–301

    Article  CAS  PubMed  Google Scholar 

  • Jeyanayagam S (2005) True confessions of the biological nutrient removal process. Flo Water Res J 1:37–46

    Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM et al (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    Article  CAS  PubMed  Google Scholar 

  • Johnson MB, Wen Z (2009) Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuel 23:5179–5183

    Article  CAS  Google Scholar 

  • Kellam SJ, Walker JM (1989) Antibacterial activity from marine microalgae in laboratory culture. Brit Phycol J 24:191–194

    Article  Google Scholar 

  • Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Factories 17:36–56

    Article  Google Scholar 

  • Kong Q-X, Li L, Martinez B et al (2009) Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 160:9–18

    Article  PubMed  CAS  Google Scholar 

  • Koreivienė J, Valčiukas R, Karosienė J et al (2014) Testing of Chlorella/Scenedesmus microalgae consortia for remediation of wastewater, CO2 mitigation and algae biomass feasibility for lipid production. J Environ Eng Landscape Manage 22:105–114

    Article  Google Scholar 

  • Kumar K, Banerjee D, Das D (2014) Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana. Bioresour Technol 152:225–233

    Article  CAS  PubMed  Google Scholar 

  • Lam MK, Lee KT, Mohamed AR (2012) Current status and challenges on microalgae-based carbon capture. Int J Greenhouse Gas Cont 10:456–469

    Article  CAS  Google Scholar 

  • Larsdotter K (2006) Wastewater treatment with microalgae – a literature review. Vatten 62:31–38

    CAS  Google Scholar 

  • Ledda C, Idà A, Allemand D et al (2015) Production of wild Chlorella sp. cultivated in digested and membrane-pretreated swine manure derived from a full-scale operation plant. Algal Res 12:68–73

    Article  Google Scholar 

  • Li F-F, Yang Z-H, Zeng R, Yang G, Chang X, Yan J-B, Hou Y-L (2011) Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber. Ind Eng Chem Res 50:6496–6502

    Article  CAS  Google Scholar 

  • Lim S-L, Chu W-L, Phang S-M (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol 101:7314–7322

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Danneels B, Vanormelingen P et al (2016) Nutrient removal from horticultural wastewater by benthic filamentous algae Klebsormidium sp., Stigeoclonium spp. and their communities: from laboratory flask to outdoor Algal Turf Scrubber (ATS). Water Res 92:61–68

    Article  CAS  PubMed  Google Scholar 

  • López CVG, Fernández FGA, Sevilla JMF et al (2009) Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes. Bioresour Technol 100:5904–5910

    Article  CAS  Google Scholar 

  • Maity JP, Bundschuh J, Chen C-Y et al (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives – a mini review. Energy 78:104–113

    Article  CAS  Google Scholar 

  • Mandal SK, Singh RP, Patel V (2011) Isolation and characterization of exopolysaccharide secreted by a toxic dinoflagellate, Amphidinium carterae Hulburt 1957 and its probable role in harmful algal blooms (HABs). Microbial Ecol 62:518–527

    Article  CAS  Google Scholar 

  • Mathimani T, Baldinelli A, Rajendran K et al (2019) Review on cultivation and thermochemical conversion of microalgae to fuels and chemicals: process evaluation and knowledge gaps. J Clean Prod 208:1053–1064

    Article  CAS  Google Scholar 

  • McGinn PJ, Dickinson KE Bhatti S et al (2011) Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosyn Res 109:231–247

    Article  CAS  Google Scholar 

  • Meher LC, Vidya SD, Naik SN (2006) Technical aspects of biodiesel production by transesterification – a review. Renew Sust Energy Rev 10:248–268

    Article  CAS  Google Scholar 

  • Mendes LBB, Vermelho AB (2013) Allelopathy as a potential strategy to improve microalgae cultivation. Biotechnol Biofuels 6:152–165

    Article  CAS  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    Article  CAS  PubMed  Google Scholar 

  • Miranda AF, Ramkumar N, Andriotis C et al (2017) Applications of microalgal biofilms for wastewater treatment and bioenergy production. Biotechnol Biofuels 10:120–142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morais MG, Costa JAV (2007a) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445

    Article  PubMed  CAS  Google Scholar 

  • Morais MG, Costa JAV (2007b) Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Convers Manag 48:2169–2173

    Article  CAS  Google Scholar 

  • Moreira D, Pires JCM (2016) Atmospheric CO2 capture by algae: negative carbon dioxide emission path. Bioresour Technol 215:371–379

    Article  CAS  PubMed  Google Scholar 

  • Muñoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Article  PubMed  CAS  Google Scholar 

  • Mustafa E-M, Phang S-M, Chu W-L (2012) Use of an algal consortium of five algae in the treatment of landfill leachate using the high-rate algal pond system. J Appl Phycol 24:953–963

    Article  CAS  Google Scholar 

  • Najdenski HM, Gigova LG, Iliev II et al (2013) Antibacterial and antifungal activities of selected microalgae and cyanobacteria. Int J Food Sci Technol 48:1533–1540

    Article  CAS  Google Scholar 

  • Nath A, Kumar PT, Rai AK et al (2017a) Microalgal consortia differentially modulate progressive adsorption of hexavalent chromium. Physiol Mol Biol Plants 23:269–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nath A, Vajpayee G, Dixit K et al (2017b) Micro-algal consortia complexity enhances ecological biomass stability through CO2 sequestration. J Algal Biomass Utln 8:19–34

    Google Scholar 

  • Natrah FM, Bossier P, Sorgeloos P et al (2014) Significance of microalgal-bacterial interactions for aquaculture. Rev Aquac 6:48–61

    Article  Google Scholar 

  • O’Neill BD, Oppenheimer M (2002) Dangerous climate impacts and the Kyoto Protocol. Science 296:1971–1972

    Article  PubMed  Google Scholar 

  • Odjadjare EC, Mutanda T, Olaniran AO (2015) Potential biotechnological application of microalgae: a critical review. Crit Rev Biotechnol 37:37–52

    Article  PubMed  CAS  Google Scholar 

  • Olguín EJ (2012) Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv 30:1031–1046

    Article  PubMed  CAS  Google Scholar 

  • Olguín EJ, Galicia S, Mercado G et al (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J Appl Phycol 15:249–257

    Article  Google Scholar 

  • Padmaperuma G, Kapoore RV, Gilmour DJ et al (2018) Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing. Crit Rev Biotechnol 38:690–703

    Article  CAS  PubMed  Google Scholar 

  • Paerl H, Pinckney J (1996) A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microbial Ecol 31:225–247

    Article  CAS  Google Scholar 

  • Parmar A, Singh NK, Pandey A et al (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102:10163–10172

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Nicholas A, Tseng C et al (2013) Seaweed and microalgae. Aquaculture, 2nd edn. Blackwell, Oxford, pp 268–293

    Google Scholar 

  • Pielke RA (2009) An idealized assessment of the economics of air capture of carbon dioxide in mitigation policy. Environ Sci Pol 12:216–225

    Article  CAS  Google Scholar 

  • Pires JCM, Martins FG, Alvim-Ferraz MCM et al (2011) Recent developments on carbon capture and storage: an overview. Chem Eng Res Des 89:1446–1460

    Article  CAS  Google Scholar 

  • Posadas E, García-Encina P-A, Soltau A et al (2013) Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors. Bioresour Technol 139:50–58

    Article  CAS  PubMed  Google Scholar 

  • Pratt R, Daniels T, Eiler JJ et al (1944) Chlorellin, an antibacterial substance from Chlorella. Am Assoc Adv Sci 99:351–352

    CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Wang Z, Sun Y et al (2016) Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production. Environ Sci Pollut Res 23:8379–8387

    Article  CAS  Google Scholar 

  • Queiroz MI, Lopes EJ, Zepka LQ et al (2007) The kinetics of the removal of nitrogen and organic matter from parboiled rice effluent by cyanobacteria in a stirred batch reactor. Bioresour Technol 98:2163–2169

    Article  CAS  PubMed  Google Scholar 

  • Quijano G, Arcila JS, Buitróna G (2017) Microalgal-bacterial aggregates: applications and perspectives for wastewater treatment. Biotechnol Adv 35:772–781

    Article  CAS  PubMed  Google Scholar 

  • Rada-Ariza AM, Lopez-Vazquez CM, van der Steen NP et al (2017) Nitrification by microalgal-bacterial consortia for ammonium removal in flat panel sequencing batch photo-bioreactors. Bioresour Technol 245:81–89

    Article  CAS  PubMed  Google Scholar 

  • Radmann EM, Camerini FV, Santos TD et al (2011) Isolation and application of SOX and NOX resistant microalgae in biofixation of CO2 from thermoelectricity plants. Energy Convers Manag 52:3132–3136

    Article  CAS  Google Scholar 

  • Raheem A, Prinsen P, Vuppaladadiyam AK (2018) A review on sustainable microalgae based biofuel and bioenergy production: recent developments. J Clean Prod 181:42–59

    Article  CAS  Google Scholar 

  • Ramanan R, Kim B-H, Cho D-H et al (2016) Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv 34:14–29

    Article  CAS  PubMed  Google Scholar 

  • Ranjan A, Patil C, Moholkar VS (2010) Mechanistic assessment of microalgal lipid extraction. Ind Eng Chem Res 49:2979–2985

    Article  CAS  Google Scholar 

  • Rawat I, Kumar R, Mutanda T et al (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Rawat I, Kumar R, Mutanda T et al (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103:444–467

    Article  CAS  Google Scholar 

  • Renuka N, Sood A, Ratha SK et al (2013) Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production. J Appl Phycol 25:1529–1537

    Article  CAS  Google Scholar 

  • Reyna-Martínez R, Gomez-Flores R, López-Chuken UJ et al (2015) Lipid production by pure and mixed cultures of Chlorella pyrenoidosa and Rhodotorula mucilaginosa isolated in Nuevo Leon, Mexico. Appl Biochem Biotechnol 175:354–359

    Article  PubMed  CAS  Google Scholar 

  • Ruiz J, Arbib Z, Álvarez-Díaz P et al (2013) Photobiotreatment model (PhBT): a kinetic model for microalgae biomass growth and nutrient removal in wastewater. Environ Technol 34:979–991

    Article  CAS  PubMed  Google Scholar 

  • Ryu HJ, Oh KK, Kim YS (2009) Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mass transfer rate. J Ind Eng Chem 15:471–475

    Article  CAS  Google Scholar 

  • Safonova E, Kvitko K, Iankevitch M et al (2004) Biotreatment of industrial wastewater by selected algal-bacterial consortia. Eng Life Sci 4:347–353

    Article  CAS  Google Scholar 

  • Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19:417–423

    Article  CAS  Google Scholar 

  • Show PL, Tang MSY, Nagarajan D et al (2017) A holistic approach to managing microalgae for biofuel applications. Int J Mol Sci 18:215–248

    Article  PubMed Central  CAS  Google Scholar 

  • Silva-Benavides AM, Torzillo G (2012) Nitrogen and phosphorus removal through laboratory batch cultures of microalga Chlorella vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal and as co-cultures. J Appl Phycol 24:267–276

    Article  CAS  Google Scholar 

  • Singh G, Thomas PB (2012) Nutrient removal from membrane bioreactor permeate using microalgae and in amicroalgaemembrane photoreactor. Bioresour Technol 117:80–85

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Kate B, Banerjee U (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95

    Article  CAS  PubMed  Google Scholar 

  • Solimeno A, García J (2017) Microalgae-bacteria models evolution: from microalgae steady-state to integrated microalgae-bacteria wastewater treatment models – a comparative review. Sci Total Environ 607-608:1136–1150

    Article  CAS  PubMed  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E et al (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Subashchandrabose SR, Ramakrishnan B, Megharaj M et al (2011) Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv 29:896–907

    Article  CAS  PubMed  Google Scholar 

  • Sydney EB, Sturm W, de Carvalho JC et al (2010) Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol 101:5892–5896

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Han W, Li P et al (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol 102:3071–3076

    Article  CAS  PubMed  Google Scholar 

  • Unnithan VV, Unc A, Smith GB (2014) Mini-review: a priori considerations for bacteria-algae interactions in algal biofuel systems receiving municipal wastewaters. Algal Res 4:35–40

    Article  Google Scholar 

  • Valderrama LT, Del Campo CM, Rodriguez CM et al (2002) Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscula. Water Res 36:4185–4192

    Article  CAS  PubMed  Google Scholar 

  • Van Den Hende S, Vervaeren H, Desmet S et al (2011) Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment. New Biotechnol 29:23–31

    Article  CAS  Google Scholar 

  • Vaz BS, Costa JAV, Morais MG (2016) CO2 biofixation by the cyanobacterium Spirulina sp. LEB 18 and the green alga Chlorella fusca LEB 111 grown using gas effluents and solid residues of thermoelectric origin. Appl Biochem Biotechnol 178:418–429

    Article  CAS  Google Scholar 

  • Wang X-J, Xia S-Q, Chen L et al (2006) Nutrients removal from municipal wastewater by chemical precipitation in a moving bed biofilm reactor. Process Biochem 41:824–828

    Article  CAS  Google Scholar 

  • Wilkie AC, Mulbry WW (2002) Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour Technol 84:81–91

    Article  CAS  PubMed  Google Scholar 

  • Wood A (1987) Simple wastewater treatment system incorporating the selective cultivation of a filamentous algae. Water Sci Technol 19:1251–1254

    Article  CAS  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  PubMed  Google Scholar 

  • Yeh KL, Chang JS (2011) Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Biotechnol J 6:1358–1366

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Zhou Y, Huang S et al (2014) Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production. Bioresour Technol 156:322–328

    Article  CAS  PubMed  Google Scholar 

  • Zhu L (2015) Biorefinery as a promising approach to promote microalgae industry: an innovative framework. Renew Sutain Energy Rev 41:1376–1384

    Article  Google Scholar 

  • Zhu L, Wang Z, Shu Q et al (2013) Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res 47:4294–4302

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by (1) Project UID/EQU/00511/2019—Laboratory for Process Engineering, Environment, Biotechnology and Energy—LEPABE funded by national funds through FCT/MCTES (PIDDAC) and (2) Project POCI-01-0145-FEDER-031736—PIV4Algae—Process Intensification for microalgal production and Valorisation, funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through FCT/MCTES. J.C.M. Pires acknowledges the FCT Investigator 2015 Programme (IF/01341/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José C. M. Pires .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonçalves, A.L., Santos, F.M., Pires, J.C.M. (2019). Microalgal Consortia: From Wastewater Treatment to Bioenergy Production. In: Hallmann, A., Rampelotto, P. (eds) Grand Challenges in Algae Biotechnology. Grand Challenges in Biology and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-25233-5_10

Download citation

Publish with us

Policies and ethics