Skip to main content

Basic Problems of Non-Fourier Heat Conduction

  • Chapter
  • First Online:
Advanced Thermal Stress Analysis of Smart Materials and Structures

Part of the book series: Structural Integrity ((STIN,volume 10))

Abstract

In this chapter, the non-Fourier heat conduction equations along with the boundary and initial conditions are solved for one-dimensional (1D) media with semi-infinite or finite dimensions in Cartesian, cylindrical, and spherical coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tzou D, Guo Z-Y (2010) Nonlocal behavior in thermal lagging. Int J Therm Sci 49(7):1133–1137

    Article  Google Scholar 

  2. Tzou D (2011) Nonlocal behavior in phonon transport. Int J Heat Mass Transf 54(1):475–481

    Article  MathSciNet  Google Scholar 

  3. Tzou DY (2014) Macro-to microscale heat transfer: the lagging behavior. Wiley

    Google Scholar 

  4. Akbarzadeh A, Fu J, Chen Z (2014) Three-phase-lag heat conduction in a functionally graded hollow cylinder. Trans Can Soc Mech Eng 38(1):155

    Article  Google Scholar 

  5. Youssef HM (2010) Theory of fractional order generalized thermoelasticity. J Heat Transf 132(6):061301

    Article  Google Scholar 

  6. Ezzat MA, El Karamany AS, Fayik MA (2012) Fractional order theory in thermoelastic solid with three-phase lag heat transfer. Arch Appl Mech 82(4):557–572

    Article  Google Scholar 

  7. Akbarzadeh A, Cui Y, Chen Z (2017) Thermal wave: from nonlocal continuum to molecular dynamics. RSC Adv 7(22):13623–13636

    Article  Google Scholar 

  8. Akbarzadeh A, Pasini D (2014) Phase-lag heat conduction in multilayered cellular media with imperfect bonds. Int J Heat Mass Transf 75:656–667

    Article  Google Scholar 

  9. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  Google Scholar 

  10. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81(1):511–519

    Article  Google Scholar 

  11. Foiles S, Baskes M, Daw M (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33(12):7983

    Article  Google Scholar 

  12. Liu Q, Jiang P, Xiang H (2008) Molecular dynamics simulations of non-Fourier heat conduction. Progr Nat Sci 18(8):999–1007

    Article  Google Scholar 

  13. Tan T et al (2011) Mechanical properties of functionally graded hierarchical bamboo structures. Acta Biomater 7(10):3796–3803

    Article  Google Scholar 

  14. Rahbar N, Soboyejo W (2011) Design of functionally graded dental multilayers. Fatigue Fract Eng Mater Struct 34(11):887–897

    Article  Google Scholar 

  15. Miserez A et al (2008) The transition from stiff to compliant materials in squid beaks. Science 319(5871):1816–1819

    Article  Google Scholar 

  16. Reddy J, Chin C (1998) Thermomechanical analysis of functionally graded cylinders and plates. J Therm Stresses 21(6):593–626

    Article  Google Scholar 

  17. Vel SS, Batra R (2003) Three-dimensional analysis of transient thermal stresses in functionally graded plates. Int J Solids Struct 40(25):7181–7196

    Article  Google Scholar 

  18. Guo L, Wang Z, Noda N (2012) A fracture mechanics model for a crack problem of functionally graded materials with stochastic mechanical properties. Proc R Soc A 468(2146), 2939–2961. The Royal Society

    Article  MathSciNet  Google Scholar 

  19. Kieback B, Neubrand A, Riedel H (2003) Processing techniques for functionally graded materials. Mater Sci Eng, A 362(1):81–106

    Article  Google Scholar 

  20. Overvelde JT et al (2016) A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom. Nat Commun 7:10929

    Article  Google Scholar 

  21. Bartlett NW et al (2015) A 3D-printed, functionally graded soft robot powered by combustion. Science 349(6244):161–165

    Article  Google Scholar 

  22. Akbarzadeh A, Abedini A, Chen Z (2015) Effect of micromechanical models on structural responses of functionally graded plates. Compos Struct 119:598–609

    Article  Google Scholar 

  23. Akbarzadeh A, Chen Z (2013) Heat conduction in one-dimensional functionally graded media based on the dual-phase-lag theory. Proc Inst Mech Eng Part C J Mech Eng Sci 227(4):744–759

    Article  Google Scholar 

  24. Babaei M, Chen Z (2008) Hyperbolic heat conduction in a functionally graded hollow sphere. Int J Thermophys 29(4):1457–1469

    Article  Google Scholar 

  25. Choudhuri SR (2007) On a thermoelastic three-phase-lag model. J Therm Stresses 30(3):231–238

    Article  Google Scholar 

  26. Ramadan K (2009) Semi-analytical solutions for the dual phase lag heat conduction in multilayered media. Int J Therm Sci 48(1):14–25

    Article  Google Scholar 

  27. Akbarzadeh A, Chen Z (2013) On the harmonic magnetoelastic behavior of a composite cylinder with an embedded polynomial eigenstrain. Compos Struct 106:296–305

    Article  Google Scholar 

  28. Chen T (2001) Thermal conduction of a circular inclusion with variable interface parameter. Int J Solids Struct 38(17):3081–3097

    Article  Google Scholar 

  29. Wang M, Pan N (2008) Modeling and prediction of the effective thermal conductivity of random open-cell porous foams. Int J Heat Mass Transf 51(5):1325–1331

    Article  Google Scholar 

  30. Arabnejad S, Pasini D (2013) Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods. Int J Mech Sci 77:249–262

    Article  Google Scholar 

  31. Akbarzadeh A et al (2016) Electrically conducting sandwich cylinder with a planar lattice core under prescribed eigenstrain and magnetic field. Compos Struct 153:632–644

    Article  MathSciNet  Google Scholar 

  32. Mirabolghasemi A, Akbarzadeh AH, Rodrigue D, Therriault D (2019) Thermal conductivity of architected cellular metamaterials. Acta Materialia 174:61–80

    Article  Google Scholar 

  33. Ashby MF, Cebon D (1993) Materials selection in mechanical design. Le Journal de Physique IV 3(C7):C7-1–C7-9

    Google Scholar 

  34. Akbarzadeh A, Chen Z (2012) Transient heat conduction in a functionally graded cylindrical panel based on the dual phase lag theory. Int J Therm 33(6):1100–1125

    Article  Google Scholar 

  35. Quintanilla R, Racke R (2006) A note on stability in dual-phase-lag heat conduction. Int J Heat Mass Transf 49(7):1209–1213

    Article  Google Scholar 

  36. Akbarzadeh AH, Chen ZT (2014) Dual phase lag heat conduction in functionally graded hollow spheres. Int J Appl Mech 6(1):1450002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengtao Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Z., Akbarzadeh, A. (2020). Basic Problems of Non-Fourier Heat Conduction. In: Advanced Thermal Stress Analysis of Smart Materials and Structures. Structural Integrity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-25201-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25201-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25200-7

  • Online ISBN: 978-3-030-25201-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics