Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-Package Flacco

  • Pascal KerschkeEmail author
  • Heike Trautmann
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


Choosing the best-performing optimizer(s) out of a portfolio of optimization algorithms is usually a difficult and complex task. It gets even worse, if the underlying functions are unknown, i.e., so-called black-box problems, and function evaluations are considered to be expensive. In case of continuous single-objective optimization problems, exploratory landscape analysis (ELA), a sophisticated and effective approach for characterizing the landscapes of such problems by means of numerical values before actually performing the optimization task itself, is advantageous. Unfortunately, until now it has been quite complicated to compute multiple ELA features simultaneously, as the corresponding code has been—if at all—spread across multiple platforms or at least across several packages within these platforms. This article presents a broad summary of existing ELA approaches and introduces flacco, an R-package for feature-based landscape analysis of continuous and constrained optimization problems. Although its functions neither solve the optimization problem itself nor the related algorithm selection problem (ASP), it offers easy access to an essential ingredient of the ASP by providing a wide collection of ELA features on a single platform—even within a single package. In addition, flacco provides multiple visualization techniques, which enhance the understanding of some of these numerical features, and thereby make certain landscape properties more comprehensible. On top of that, we will introduce the package’s built-in, as well as web-hosted and hence platform-independent, graphical user interface (GUI). It facilitates the usage of the package—especially for people who are not familiar with R—and thus makes flacco a very convenient toolbox when working towards algorithm selection of continuous single-objective optimization problems.



We acknowledge support by the ERCIS and thank Carlos Hernández (CINVESTAV, Mexico), Jan Dageförde, as well as Christian Hanster (University of Münster, Germany) for their valuable contributions to flacco and its GUI.


  1. Abell, T., Malitsky, Y., & Tierney, K. (2013). Features for exploiting black-box optimization problem structure. In Learning and intelligent optimization (pp. 30–36). Berlin: Springer.Google Scholar
  2. Beachkofski, B. K., & Grandhi, R. V. (2002). Improved distributed hypercube sampling. In 43rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference.Google Scholar
  3. Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., & Studerus, E., et al. (2016). mlr: Machine Learning in R. Journal of Machine Learning Research, 17(170), 1–5. R-package version 2.10.Google Scholar
  4. Bischl, B., Mersmann, O., Trautmann, H., & Preuss, M. (2012). Algorithm selection based on exploratory landscape analysis and cost-sensitive learning. In Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO ’12 (pp. 313–320). New York: ACM.Google Scholar
  5. Bossek, J. (2017). smoof: Single-and multi-objective optimization test functions. The R Journal.
  6. Byrd, R. H., Peihuang, L., Nocedal, J., & Zhu, C. (1995). A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing, 16(5), 1190–1208.Google Scholar
  7. Chang, W., Cheng, J., Allaire, J. J., Xie, Y., & McPherson, J. (2016). Shiny: Web application framework for R. R-package version 0.14.1.Google Scholar
  8. Christoph, F., Hofacker, I. L., Stadler, P. F., & Wolfinger, M. T. (2002). Barrier trees of degenerate landscapes. Zeitschrift für Physikalische Chemie International Journal of Research in Physical Chemistry and Chemical Physics216(2/2002), 155.Google Scholar
  9. Daolio, F., Liefooghe, A., Verel, S., Aguirre, H., & Tanaka, K. (2016). Problem features versus algorithm performance on rugged multi-objective combinatorial fitness landscapes. Evolutionary Computation.Google Scholar
  10. Friedman, J. H. (1997). On bias, variance, 0/1–loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery, 1(1), 55–77.Google Scholar
  11. Guido VanRossum and The Python Development Team. (2015). The Python Language Reference–Release 3.5.0. Python Software Foundation.Google Scholar
  12. Hansen, N., Auger, A., Finck, S., & Ros, R. (2010). Real-parameter black-box optimization benchmarking 2010: experimental setup. Technical Report RR-7215, INRIA.Google Scholar
  13. Hansen, N., Finck, S., Ros, R., & Auger, A. (2009). Real-parameter black-box optimization benchmarking 2009: noiseless functions definitions. Technical Report RR-6829, INRIA.Google Scholar
  14. Hanster, C., & Kerschke, P. (2017). Flaccogui: Exploratory landscape analysis for everyone.Google Scholar
  15. Hutter, F., Lin, X., Hoos, H. H., & Leyton-Brown, K. (2014). Algorithm runtime prediction: Methods and evaluation. Journal of Artificial Intelligence, 206, 79–111.Google Scholar
  16. Jobson, J. (2012). Applied multivariate data analysis: Volume II: Categorical and multivariate methods. Berlin: Springer.Google Scholar
  17. Jones, T. (1995). Evolutionary algorithms, fitness landscapes and search. Ph.D. thesis, Citeseer.Google Scholar
  18. Jones, T., & Forrest, S. (1995). Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In Proceedings of the 6th international conference on genetic algorithms (pp. 184–192). Morgan Kaufmann Publishers Inc.Google Scholar
  19. Kerschke, P. (2017). Flacco: Feature-based landscape analysis of continuous and constrained optimization problems. R-package version 1.6.Google Scholar
  20. Kerschke, P., & Trautmann, H. (2016). The R-package FLACCO for exploratory landscape analysis with applications to multi-objective optimization problems. In Proceedings of the IEEE congress on evolutionary computation (CEC). IEEE.Google Scholar
  21. Kerschke, P., Preuss, M., Hernández, C., Schütze, O., Sun, J.- Q., Grimme, C., et al. (2014). Cell mapping techniques for exploratory landscape analysis. In EVOLVE—A bridge between probability, set oriented numerics, and evolutionary computation V (pp. 115–131). Berlin: Springer.Google Scholar
  22. Kerschke, P., Preuss, M., Wessing, S., & Trautmann, H. (2015). Detecting funnel structures by means of exploratory landscape analysis. In Proceedings of the 17th annual conference on genetic and evolutionary computation (pp. 265–272). ACM.Google Scholar
  23. Kerschke, P., Preuss, M., Wessing, S., & Trautmann, H. (2016). Low-budget exploratory landscape analysis on multiple peaks models. In Proceedings of the 18th annual conference on genetic and evolutionary computation. ACM.Google Scholar
  24. Lunacek, M., & Whitley, D. (2006). The dispersion metric and the CMA evolution strategy. In Proceedings of the 8th annual conference on genetic and evolutionary computation (pp. 477–484). ACM.Google Scholar
  25. Malan K. M., Oberholzer, J. F., & Engelbrecht, A. P. (2015). Characterising constrained continuous optimisation problems. In Proceedings of the IEEE congress on evolutionary computation (CEC) (pp. 1351–1358). IEEE.Google Scholar
  26. Malan, K. M., & Engelbrecht, A. P. (2009). Quantifying ruggedness of continuous landscapes using entropy. In Proceedings of the IEEE congress on evolutionary computation (CEC) (pp. 1440–1447). IEEE.Google Scholar
  27. MATLAB. (2013). Version 8.2.0 (R2013b). The MathWorks Inc., Natick, Massachusetts.Google Scholar
  28. McKay, M. D., Beckman, R. J., & Conover, W. J. (2000). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 42(1), 55–61.Google Scholar
  29. Mersmann, O. (2014). Microbenchmark: Accurate timing functions. R-package version 1.4-2.Google Scholar
  30. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., & Rudolph, G. (2011). Exploratory landscape analysis. In Proceedings of the 13th annual conference on genetic and evolutionary computation, GECCO ’11 (pp. 829–836). New York: ACM.Google Scholar
  31. Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., Bossek, J., & Neumann, F. (2013). A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem. Annals of Mathematics and Artificial Intelligence, 69(2), 151–182.Google Scholar
  32. Morgan, R., & Gallagher, M. (2015). Analysing and characterising optimization problems using length scale. Soft Computing, 1–18.Google Scholar
  33. Müller, C. L., & Sbalzarini, I. F. (2011). Global characterization of the CEC 2005 fitness landscapes using fitness-distance analysis. In Applications of evolutionary computation (pp. 294–303). Berlin: Springer.Google Scholar
  34. Muñoz, M. A., Kirley, M., & Halgamuge, S. K. (2012). Landscape characterization of numerical optimization problems using biased scattered data. In 2012 IEEE congress on evolutionary computation (CEC) (pp. 1–8). IEEE.Google Scholar
  35. Muñoz, M. A., Kirley, M., & Halgamuge, S. K. (2015a). Exploratory landscape analysis of continuous space optimization problems using information content. IEEE transactions on evolutionary computation, 19(1), 74–87.Google Scholar
  36. Muñoz, M. A., Sun, Y., Kirley, M., & Halgamuge, S. K. (2015b). Algorithm selection for black-box continuous optimization problems: A survey on methods and challenges. Information Sciences, 317, 224–245.Google Scholar
  37. Ochoa, G., Verel, S., Daolio, F., & Tomassini, M. (2014). Local optima networks: A new model of combinatorial fitness landscapes. In Recent advances in the theory and application of fitness landscapes (pp. 233–262). Berlin: Springer.Google Scholar
  38. Pihera, J., & Musliu, N. (2014). Application of machine learning to algorithm selection for TSP. In Proceedings of the IEEE 26th international conference on tools with artificial intelligence (ICTAI). IEEE press.Google Scholar
  39. R Core Team. (2018). R: A language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria.Google Scholar
  40. Rice, J. R. (1976). The algorithm selection problem. Advances in Computers, 15, 65–118.Google Scholar
  41. Shirakawa, S., & Nagao, T. (2016). Bag of local landscape features for fitness landscape analysis. Soft Computing, 20(10), 3787–3802.Google Scholar
  42. Sievert, C., Parmer, C., Hocking, T., Chamberlain, S., Ram, K., Corvellec, M., et al. (2016). Plotly: Create interactive web graphics via ‘plotly.js’. R-package version 4.5.6.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Information Systems and StatisticsUniversity of MünsterMünsterGermany

Personalised recommendations