Skip to main content

Flow Perturbation Experiments

  • Chapter
  • First Online:
The Heart and Circulation
  • 1003 Accesses

Abstract

On account of the relative ease of accessibility, the absence of valves, and lack of innervation, the early embryo circulation is a suitable model for addressing the question about the primacy of the central versus the peripheral circulation. In comparison to a horizontally placed animal, or a vertically oriented human circulatory system, embryonic and extra-embryonic circulations occur on a single plane, rendering the force of gravity almost negligible. Microsphere occlusion studies demonstrate the importance of blood flow in the morphogenesis of the heart chambers, valves, and overall morphology. Occlusion of the vitelline veins similarly impairs flow dynamics and adversely affects cardiac morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hove JR, et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature. 2003;421(6919):172–7.

    Article  CAS  Google Scholar 

  2. Orts LF, Puerta FJ, Sobrado PJ. The morphogenesis of the ventricular flow pathways in man. Arch Anat Histol Embryol. 1980;63:5–15.

    Google Scholar 

  3. Warren KS, et al. The genetic basis of cardiac function: dissection by zebrafish (Danio rerio) screens. Philos Trans R Soc Lond B Biol Sci. 2000;355(1399):939–44.

    Article  CAS  Google Scholar 

  4. Chen JN, et al. Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development. 1996;123(1):293–302.

    CAS  PubMed  Google Scholar 

  5. Broekhuizen M, et al. Altered hemodynamics in chick embryos after extraembryonic venous obstruction. Ultrasound Obstet Gynecol. 1999;13(6):437–45.

    Article  CAS  Google Scholar 

  6. Hogers B, et al. Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ Res. 1997;80(4):473–81.

    Article  CAS  Google Scholar 

  7. Stekelenburg-de Vos S, et al. Acutely altered hemodynamics following venous obstruction in the early chick embryo. J Exp Biol. 2003;206(6):1051–7.

    Article  Google Scholar 

  8. Ursem NTC, et al. Ventricular diastolic filling characteristics in stage-24 chick embryos after extra-embryonic venous obstruction. J Exp Biol. 2004;207(9):1487–90.

    Article  Google Scholar 

  9. Wagman A, Hu N, Clark EB. Effect of changes in circulating blood volume on cardiac output and arterial and ventricular blood pressure in the stage 18, 24, and 29 chick embryo. Circ Res. 1990;67(1):187–92.

    Article  CAS  Google Scholar 

  10. Houweling AC, et al. Developmental pattern of ANF gene expression reveals a strict localization of cardiac chamber formation in chicken. Anat Rec. 2002;266(2):93–102.

    Article  CAS  Google Scholar 

  11. Toshimori H, et al. Chicken atrial natriuretic peptide (chANP) and its secretion. Cell Tissue Res. 1990;259(2):293–8.

    Article  CAS  Google Scholar 

  12. Nakazawa M, et al. Effect of atrial natriuretic peptide on hemodynamics of the stage 21 chick embryo. Pediatr Res. 1990;27(6):557–60.

    Article  CAS  Google Scholar 

  13. Hu N, et al. Effect of atrial natriuretic peptide on diastolic filling in the stage 21 chick embryo. Pediatr Res. 1995;37(4):465–8.

    Article  CAS  Google Scholar 

  14. Bowers PN, Tinney JP, Keller BB. Nitroprusside selectively reduces ventricular preload in the stage 21 chick embryo. Cardiovasc Res. 1996;31(supp1):E132–8.

    Article  CAS  Google Scholar 

  15. Li K, Sirois P, Rouleau J. Role of endothelial cells in cardiovascular function. Life Sci. 1994;54(9):579–92.

    Article  CAS  Google Scholar 

  16. Yanagisawa M, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332(6163):411–5.

    Article  CAS  Google Scholar 

  17. Inoue A, et al. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci U S A. 1989;86(8):2863.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Furst, B. (2020). Flow Perturbation Experiments. In: The Heart and Circulation. Springer, Cham. https://doi.org/10.1007/978-3-030-25062-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25062-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25061-4

  • Online ISBN: 978-3-030-25062-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics