Skip to main content

Models of the Heart

  • Chapter
  • First Online:
The Heart and Circulation
  • 1090 Accesses

Abstract

The complex nature of interaction between the heart and the circulation was well recognized among the early nineteenth-century physiologists, and despite numerous technical challenges associated with “opening of the circuit,” attempts were made to investigate the mechanical behavior of the heart itself. The ideas that led to the development and application of this radical experiment played a key role in the understanding of the mechanical and energetic function of the heart which remains incomplete. Further discussed are: recirculating and non-recirculating isolated heart preparations; Otto Frank’s and Ernest Starling’s isolated heart preparations and original formulation of the “law of the heart”; similarity between the isolated heart preparation and the hydraulic ram as a unique model of heart’s mechanical action; quantification of ventricular pump function by the “three element Windkessel”; the “physiological enigma” of the high myocardial basal metabolic rate and its low mechanical efficiency; length-dependent activation of the cardiac muscle and the reformulation of the “law of the heart” in terms of myocardial energetics; and the conceptual drawbacks of the total artificial hearts and relative success of the ventricular assist and continuous flow devices.

The test of a scientific theory is not how good or reasonable it sounds, but how well it fits the facts and, in particular, how fruitful it is in generating further penetration into the mysteries of nature.

Keith Francis (2012)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The principle of operation of the hydraulic ram can be expressed with Bernoulli’s energy law which states that if pressure losses due to turbulence and friction are neglected, the sum of hydrostatic pressure, potential energy, and kinetic energy remain constant. See also Sect. 24.2.

  2. 2.

    The original Windkessel model introduced by Otto Frank in 1899 consisted only of a resistance and a compliance element.

References

  1. Zimmer HG. Modifications of the isolated frog heart preparation in Carl Ludwig’s Leipzig Physiological Institute: relevance for cardiovascular research. Can J Cardiol. 2000;16(1):61.

    CAS  PubMed  Google Scholar 

  2. Zimmer HG. Otto Frank and the fascination of high-tech cardiac physiology. Clin Cardiol. 2004;27(11):665–6.

    Article  PubMed  Google Scholar 

  3. Zimmer HG. Johann Nepomuk Czermak and his isolated frog heart. Clin Cardiol. 2005;28(5):257.

    Article  PubMed  Google Scholar 

  4. Katz AM. Ernest Henry Starling, his predecessors, and the Law of the Heart. Circulation. 2002;106(23):2986–92.

    Article  PubMed  Google Scholar 

  5. Frank O. On the dynamics of cardiac muscle (Translated By Chapman CB and Wasserman E). Am Heart J. 1959;58(2):282–317.

    Article  Google Scholar 

  6. Sagawa K. The ventricular pressure-volume diagram revisited. Circ Res. 1978;43(5):677–87.

    Article  CAS  PubMed  Google Scholar 

  7. Sagawa K, Lie RK, Schaefer J. Translation of Otto Frank’s paper “Die Grundform des Arteriellen Pulses” Zeitschrift fur Biologie 37: 483-526 (1899). J Mol Cell Cardiol. 1990;22(3):253.

    Article  CAS  PubMed  Google Scholar 

  8. Frank O. Zur Dynamik des Herzmuskels. Z Biol. 1895;32:370–437.

    Google Scholar 

  9. De Burgh Daly I. The Second Bayliss-Starling Memorial Lecture. Some aspects of their separate and combined research interests. J Physiol. 1967;191(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Patterson S, Starling E. On the mechanical factors which determine the output of the ventricles. J Physiol. 1914;48(5):357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wiggers CJ. The ciruclation and ciruclation research in perspective. In: Hamilton WF, Dow P, editors. Handbook of physiology. Washington, DC: American Physiological Society; 1962. p. 1–9.

    Google Scholar 

  12. Markwalder J, Starling E. On the constancy of the systolic output under varying conditions. J Physiol. 1914;48(4):348–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Patterson S, Piper H, Starling E. The regulation of the heart beat. J Physiol. 1914;48(6):465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Starling EH. The Linacre Lecture on the Law of the Heart. London: Longmans, Green & Co; 1918.

    Google Scholar 

  15. Hamilton W. The Lewis A. Connor memorial lecture: the physiology of the cardiac output. Circulation. 1953;8(4):527.

    Article  CAS  PubMed  Google Scholar 

  16. Westerhof N, Stergiopulos N, Noble MI. Snapshots of hemodynamics: an aid for clinical research and graduate education. New York: Springer; 2010.

    Book  Google Scholar 

  17. Elzinga G. “Starling’s Law of the Heart” a historical misinterpretation. Basic Res Cardiol. 1989;84(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  18. Guyton AC. Textbook of medical physiology. Philadelphia: WB Saunders Co; 1956. p. 82.

    Google Scholar 

  19. Schmid K. Ueber Herzstoss und Pulskurven. Wien Med Wochenschr. 1892:622.

    Google Scholar 

  20. Steiner R. Introducing anthroposophical medicine: lecture of March 22 1920, Dornach, Switzerland. Hudson: Rudolf Steiner Press; 1999. p. 19–33.

    Google Scholar 

  21. Havlicek H. Arbeitet das Herz wie eine Druckpumpe oder wie ein Stoßheber. Basic Res Cardiol. 1937;1(1):188–224.

    Article  Google Scholar 

  22. Manteuffel-Szoege L. Energy sources of blood circulation and the mechanical action of the heart. Thorax. 1960;15(1):47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Manteuffel-Szoege L, Husemann G. Ueber die Bewegung des Blutes: Haemodynamische Untersuchungen. Stuttgart: Verlag Freies Geistesleben; 1977.

    Google Scholar 

  24. Alexander W. Branko Furst’s radical alternative: is the heart moved by the blood, rather than vice versa? Pharmacy and Therapeutics. 2017;42(1):33–9.

    Google Scholar 

  25. Basfeld M, Mueller EA. The hydraulic ram. Forschung im Ingenieur. 1984;50(5):141–7.

    Article  Google Scholar 

  26. Basfeld M. Der Hydraulische Widder. Naturvorganege als reales Symbol der Menchlichen Herztaetigkeit. Beitraege zu einer Erweiterung der Heilkunst. 1982;35(1):1–22.

    Google Scholar 

  27. Sengupta PP, Narula J. RV form and function a piston pump, vortex impeller, or hydraulic ram? JACC Cardiovasc Imaging. 2013;6(5):636–9.

    Article  PubMed  Google Scholar 

  28. Carlsson M, et al. Total heart volume variation throughout the cardiac cycle in humans. Am J Physiol Heart Circ Physiol. 2004;287(1):H243–50.

    Article  CAS  PubMed  Google Scholar 

  29. Gauer OH. Volume changes of the left ventricle during blood pooling and exercise in the intact animal. Their effects on left ventricular performance. Physiol Rev. 1955;35(1):143–55.

    Article  CAS  PubMed  Google Scholar 

  30. Suga H. Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am J Physiol Heart Circ Physiol. 1979;236(3):H498–505.

    Article  CAS  Google Scholar 

  31. Steiner R. Introducing Anthroposophical Medicine: lecture of March 22 1920. Dornach: Rudolf Steiner Press; 1999.

    Google Scholar 

  32. Elzinga G, Westerhof N. How to quantify pump function of the heart. The value of variables derived from measurements on isolated muscle. Circ Res. 1979;44(3):303.

    Article  CAS  PubMed  Google Scholar 

  33. Westerhof N, Elzinga G, Sipkema P. An artificial arterial system for pumping hearts. J Appl Physiol. 1971;31(5):776–81.

    Article  CAS  PubMed  Google Scholar 

  34. Westerhof N, Lankhaar JW, Westerhof BE. The arterial windkessel. Med Biol Eng Comput. 2009;47(2):131–41.

    Article  PubMed  Google Scholar 

  35. Elzinga G, Westerhof N. Matching between ventricle and arterial load. An evolutionary process. Circ Res. 1991;68(6):1495–500.

    Article  CAS  PubMed  Google Scholar 

  36. Van den Horn G, Westerhof N, Elzinga G. Optimal power generation by the left ventricle. A study in the anesthetized open thorax cat. Circ Res. 1985;56(2):252–61.

    Article  PubMed  Google Scholar 

  37. Westerhof N, Elzinga G. The apparent source resistance of heart and muscle. Ann Biomed Eng. 1978;6(1):16–32.

    Article  CAS  PubMed  Google Scholar 

  38. Elzinga G, Westerhof N. End diastolic volume and source impedance of the heart. Ciba Found Symp. 1974;24:241–55.

    Google Scholar 

  39. Elzinga G, Piene H, De Jong J. Left and right ventricular pump function and consequences of having two pumps in one heart. A study on the isolated cat heart. Circ Res. 1980;46(4):564.

    Article  CAS  PubMed  Google Scholar 

  40. Elzinga G, Westerhof N. Pressure and flow generated by the left ventricle against different impedances. Circ Res. 1973;32(2):178–86.

    Article  CAS  PubMed  Google Scholar 

  41. Sunagawa K, Maughan WL, Sagawa K. Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res. 1985;56(4):586–95.

    Article  CAS  PubMed  Google Scholar 

  42. Wilcken DEL, et al. Effects of alterations in aortic impedance on the performance of the ventricles. Circ Res. 1964;14(4):283–93.

    Article  CAS  PubMed  Google Scholar 

  43. Toorop GP, et al. Matching between feline left ventricle and arterial load: optimal external power or efficiency. Am J Physiol Heart Circ Physiol. 1988;254(2):H279–85.

    Article  CAS  Google Scholar 

  44. Asanoi H, Sasayama S, Kameyama T. Ventriculoarterial coupling in normal and failing heart in humans. Circ Res. 1989;65(2):483–93.

    Article  CAS  PubMed  Google Scholar 

  45. Van den Horn G, Westerhof N, Elzinga G. Feline left ventricle does not always operate at optimum power output. Am J Physiol Heart Circ Physiol. 1986;250(6):H961–7.

    Article  Google Scholar 

  46. Nichols WW, O’Rourke MF. Input impedance as ventricular load. In: Nichols WW, O’Rourke MF, editors. McDonald’s blood flow in arteries: theoretic, experimental, and clinical principles. Philadelphia: Lea & Fabiger; 1990. p. 330–42.

    Google Scholar 

  47. Mitchell JR. Is the heart a pressure or flow generator? Possible implications and suggestions for cardiovascular pedagogy. Adv Physiol Educ. 2015;39(3):242–7.

    Article  PubMed  Google Scholar 

  48. Furst B, O’Leary AM. Is the heart a pressure or flow generator? Possible implications and suggestions for cardiovascular pedagogy. Adv Physiol Educ. 2016;40(2):200.

    Article  PubMed  Google Scholar 

  49. Suga H. Time course of left ventricular pressure-volume relationship under various enddiastolic volume. Jpn Heart J. 1969;10(6):509.

    Article  CAS  PubMed  Google Scholar 

  50. Suga H. Time course of left ventricular pressure-volume relationship under various extents of aortic occlusion. Jpn Heart J. 1970;11(4):373.

    Article  CAS  PubMed  Google Scholar 

  51. Suga H, Sagawa K, Shoukas AA. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res. 1973;32(3):314–22.

    Article  CAS  PubMed  Google Scholar 

  52. Suga H. Cardiac energetics: from Emax to pressure-volume area. Clin Exp Pharmacol Physiol. 2003;30(8):580–5.

    Article  CAS  PubMed  Google Scholar 

  53. Senzaki H, Chen CH, Kass DA. Single-beat estimation of end-systolic pressure-volume relation in humans: a new method with the potential for noninvasive application. Circulation. 1996;94(10):2497–506.

    Article  CAS  PubMed  Google Scholar 

  54. Baan J, et al. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation. 1984;70(5):812–23.

    Article  CAS  PubMed  Google Scholar 

  55. Georgakopoulos D, et al. In vivo murine left ventricular pressure-volume relations by miniaturized conductance micromanometry. Am J Physiol Heart Circ Physiol. 1998;274(4):H1416.

    Article  CAS  Google Scholar 

  56. Segers P, Stergiopulos N, Westerhof N. Quantification of the contribution of cardiac and arterial remodeling to hypertension. Hypertension. 2000;36(5):760–5.

    Article  CAS  PubMed  Google Scholar 

  57. Kass D, et al. Comparative influence of load versus inotropic states on indexes of ventricular contractility: experimental and theoretical analysis based on pressure-volume relationships [published erratum appears in Circulation 1988 Mar; 77 (3): 559]. Circulation. 1987;76(6):1422–36.

    Article  CAS  PubMed  Google Scholar 

  58. Van der Velde E, et al. Nonlinearity and load sensitivity of end-systolic pressure-volume relation of canine left ventricle in vivo. Circulation. 1991;83(1):315–27.

    Article  PubMed  Google Scholar 

  59. Su J, Crozatier B. Preload-induced curvilinearity of left ventricular end-systolic pressure-volume relations. Effects on derived indexes in closed-chest dogs. Circulation. 1989;79(2):431–40.

    Article  CAS  PubMed  Google Scholar 

  60. Ross J, et al. Adrenergic control of the force-frequency relation. Circulation. 1995;92(8):2327–32.

    Article  PubMed  Google Scholar 

  61. Chen CH, et al. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol. 2001;38(7):2028.

    Article  CAS  PubMed  Google Scholar 

  62. Kjorstad KE, Korvald C, Myrmel T. Pressure-volume-based single-beat estimations cannot predict left ventricular contractility in vivo. Am J Physiol Heart Circ Physiol. 2002;282(5):H1739.

    Article  CAS  PubMed  Google Scholar 

  63. Loiselle D, et al. Energetic consequences of mechanical loads. Prog Biophys Mol Biol. 2008;97(2):348–66.

    Article  CAS  PubMed  Google Scholar 

  64. Evans C, Hill AV. The relation of length to tension development and heat production on contraction in muscle. J Physiol. 1914;49(1–2):10–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gibbs CL, Chapman JB. Cardiac mechanics and energetics: chemomechanical transduction in cardiac muscle. American Journal of Physiology-Heart and Circulatory Physiology. 1985;249(2):H199–206.

    Article  CAS  Google Scholar 

  66. Starling E, Visscher M. The regulation of the energy output of the heart. J Physiol. 1927;62(3):243–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fenn WO. A quantitative comparison between the energy liberated and the work performed by the isolated sartorius muscle of the frog. J Physiol. 1923;58(2–3):175–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Suga H. Global cardiac function: mechano-energetico-informatics. J Biomech. 2003;36(5):713–20.

    Article  PubMed  Google Scholar 

  69. Suga H. Ventricular energetics. Physiol Rev. 1990;70(2):247.

    Article  CAS  PubMed  Google Scholar 

  70. Suga H, et al. Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure volume area in canine left ventricle. Circ Res. 1983;53(3):306–18.

    Article  CAS  PubMed  Google Scholar 

  71. Hata K, Goto Y, Suga H. External mechanical work during relaxation period does not affect myocardial oxygen consumption. Am J Physiol Heart Circ Physiol. 1991;261(6):H1778–84.

    Article  CAS  Google Scholar 

  72. Takaki M. Left ventricular mechanoenergetics in small animals. Jpn J Physiol. 2004;54(3):175.

    Article  CAS  PubMed  Google Scholar 

  73. Gibbs CL. Cardiac energetics: sense and nonsense. Clin Exp Pharmacol Physiol. 2003;30(8):598–603.

    Article  CAS  PubMed  Google Scholar 

  74. Gibbs CL, Chapman J. Cardiac heat production. Annu Rev Physiol. 1979;41(1):507–19.

    Article  CAS  PubMed  Google Scholar 

  75. Baxi J, Barclay C, Gibbs C. Energetics of rat papillary muscle during contractions with sinusoidal length changes. Am J Physiol Heart Circ Physiol. 2000;278(5):H1545–54.

    Article  CAS  PubMed  Google Scholar 

  76. Barclay CJ, Widen C, Mellors L. Initial mechanical efficiency of isolated cardiac muscle. J Exp Biol. 2003;206(16):2725–32.

    Article  CAS  PubMed  Google Scholar 

  77. Mast F, Elzinga G. Heat released during relaxation equals force-length area in isometric contractions of rabbit papillary muscle. Circ Res. 1990;67(4):893–901.

    Article  CAS  PubMed  Google Scholar 

  78. Balaban RS. Cardiac energy metabolism homeostasis: role of cytosolic calcium. J Mol Cell Cardiol. 2002;34(10):1259–71.

    Article  CAS  PubMed  Google Scholar 

  79. Neely J, et al. The effects of increased heart work on the tricarboxylate cycle and its interactions with glycolysis in the perfused rat heart. Biochem J. 1972;128(1):147.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Williamson J, et al. Coordination of citric acid cycle activity with electron transport flux. Circ Res. 1976;38(5 Suppl 1):I39.

    CAS  PubMed  Google Scholar 

  81. Katz LA, et al. Relation between phosphate metabolites and oxygen consumption of heart in vivo. Am J Physiol Heart Circ Physiol. 1989;256(1):H265–74.

    Article  CAS  Google Scholar 

  82. Saks V, et al. Cardiac system bioenergetics: metabolic basis of the Frank-Starling law. J Physiol. 2006;571(2):253–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Brutsaert DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev. 2003;83(1):59–115.

    Article  CAS  PubMed  Google Scholar 

  84. Mancini D, Burkhoff D. Mechanical device-based methods of managing and treating heart failure. Circulation. 2005;112(3):438–48.

    Article  PubMed  Google Scholar 

  85. Gray NA, Selzman CH. Current status of the total artificial heart. Am Heart J. 2006;152(1):4–10.

    Article  PubMed  Google Scholar 

  86. Colacino F, et al. Modeling, analysis, and validation of a pneumatically driven left ventricle for use in mock circulatory systems. Med Eng Phys. 2007;29(8):829–39.

    Article  CAS  PubMed  Google Scholar 

  87. Baloa L, Boston J, Antaki J. Elastance-based control of a mock circulatory system. Ann Biomed Eng. 2001;29(3):244–51.

    Article  CAS  PubMed  Google Scholar 

  88. Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 1974;35(1):117–26.

    Article  CAS  PubMed  Google Scholar 

  89. Moscato F, et al. Left ventricular pressure-volume loop analysis during continuous cardiac assist in acute animal trials. Artif Organs. 2007;31(5):369–76.

    Article  PubMed  Google Scholar 

  90. Vandenberghe S, et al. Modeling ventricular function during cardiac assist: does time-varying elastance work? ASAIO J. 2006;52(1):4.

    Article  PubMed  Google Scholar 

  91. Danielsen M, Ottesen JT. Describing the pumping heart as a pressure source. J Theor Biol. 2001;212(1):71–81.

    Article  CAS  PubMed  Google Scholar 

  92. Ottesen JT, Danielsen M. Modeling ventricular contraction with heart rate changes. J Theor Biol. 2003;222(3):337–46.

    Article  CAS  PubMed  Google Scholar 

  93. DeVries WC. The permanent artificial heart. JAMA. 1988;259(6):849–59.

    Article  CAS  PubMed  Google Scholar 

  94. Copeland JG, et al. Experience with more than 100 total artificial heart implants. J Thorac Cardiovasc Surg. 2012;143(3):727–34.

    Article  PubMed  Google Scholar 

  95. Torregrossa G, et al. Results with syncardia total artificial heart beyond 1 year. ASAIO J. 2014;60(6):626–34.

    Article  PubMed  Google Scholar 

  96. Kohli HS, et al. Exercise blood pressure response during assisted circulatory support: comparison of the total artifical heart with a left ventricular assist device during rehabilitation. J Heart Lung Transplant. 2011;30(11):1207–13.

    Article  PubMed  Google Scholar 

  97. Masai T, et al. Hepatic dysfunction after left ventricular mechanical assist in patients with end-stage heart failure: role of inflammatory response and hepatic microcirculation. Ann Thorac Surg. 2002;73(2):549–55.

    Article  PubMed  Google Scholar 

  98. Rogers JG, et al. Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol. 2010;55(17):1826–34.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Furst, B. (2020). Models of the Heart. In: The Heart and Circulation. Springer, Cham. https://doi.org/10.1007/978-3-030-25062-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25062-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25061-4

  • Online ISBN: 978-3-030-25062-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics