Skip to main content

Circulatory and Respiratory Functions of the Blood

  • Chapter
  • First Online:
The Heart and Circulation
  • 1067 Accesses

Abstract

The concept of mean circulatory pressure (MCP) is based on a manufactured phenomenon which fails to account for the movement of blood after cardiac arrest. Direct observations of microvascular beds in experimental animals confirm vestigial movement of the blood in direction of the heart up to 30 min following the cessation of heart’s contractions. Observations on patients and dogs in deep hypothermic arrest confirm persistent movement of blood against the pressure gradient. The phenomenon of spontaneous return of circulation (SROC) after cardiac arrest and “failed” resuscitation is well-described in the literature. Further discussed are: interstitial pressure (IP) as a marker of the rate of fluid movement across the capillary membrane; negative interstitial pressure and its importance in the maintenance of constant intravascular volume, normal organ function, and facilitation of wound healing; historical development of the concepts of vis á fronte (force from the front) and vis a tergo (force from behind) in relation to heart and capillary actions. The introduction of mechanical respiration gradually obscured the importance of pulmonary microvascular beds for left ventricular filling. It marks the transition from the “hemocentric” view of circulation, where microvascular beds are seen as the principal source of blood propulsion, to a “cardiocentric” view where this role is ascribed to the heart.

That is the essence of science: ask an impertinent question, and you are on the way to a pertinent answer.

Jacob Bronowski (1973)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Distension of the right heart can be readily observed in patients after failed cardiopulmonary resuscitation with the aid of transthoracic or transesophageal echo probe.

  2. 2.

    The peak absorption of water from the intestine in humans is in the order of 1 L/h. In cat, rat, and rabbit, rapid water absorption is known to cause intravascular hemolysis in portal vein. A dehydrated camel can drink 30–33% of its body weight in 10 min [36].

  3. 3.

    Subatmospheric pressure is present throughout the thorax and plays an important role in maintaining the patency of the thin-walled, easily collapsible veins. Breaking of the vacuum by opening of the chest (pneumothorax) significantly reduces venous return. In light of our discussion, the common explanation that the negative intrapleural pressure is created by the tendency of the lungs to collapse and the recoil of the chest wall will have to be revised.

    Negative pressure extends also into the mediastinum and the esophagus, where it can be measured by means of an esophageal balloon-tipped manometer. Of interest, negative interstitial pressure is commonly used by anesthesia practitioners for the identification of the thoraco-lumbar epidural space by the “hanging drop” technique. A drop of saline placed at the hub of the advancing needle is sucked into the epidural space, confirming its proper placement.

  4. 4.

    Tracking of gas (carbon dioxide) into the tissues spaces of the neck and face can occasionally be seen after laparoscopic surgery. Extreme degrees of subcutaneous emphysema (air trapping) can occur in chest trauma patients with tension pneumothorax with air tracking through the tissues spaces of the entire body, i.e., the “Michelin man.”

  5. 5.

    In Galen’s system of medicine, air (aer) consists of (latent) heat and of pneuma (spiritus), the formative, life-giving principle. Heat or warmth was considered a separate element (quality), not only a secondary product of combustion. It pervaded the other three, namely earth, water, and air, and was the cause of their transformation [58].

  6. 6.

    Epicureanism, a system of philosophy founded by Epicurus (341–270 BCE), the follower of Democritus (460–370 BCE), attempted to explain the world exclusively upon natural (material) causes. According to epicurean view, the world consists of physically indivisible, indestructible atoms, of which there are as many types as the number of different substances.

  7. 7.

    Harvey completed the draft of this lesser known book (first published only in 1959) a year before the publication of De Motu Cordis. He investigated various sources and causes of living movement, including the self-motion in animals and humans, in the context of explanatory principles of Aristotelian pneumatic doctrine. Harvey concluded that vital spirit and “innate heat” are the active medium between the soul and body and the principal causes of voluntary as well as autonomous movements, and by extension, of the self-moving blood and of the beating heart [62].

  8. 8.

    Negative pressures in the xylem capillaries of the transpiring trees can be as low as −40 to −60 atmospheres [66].

References

  1. Rothe CF. Mean circulatory filling pressure: its meaning and measurement. J Appl Physiol. 1993;74(2):499–509.

    Article  CAS  PubMed  Google Scholar 

  2. Guyton AC, Polizo D, Armstrong GG. Mean circulatory filling pressure measured immediately after cessation of heart pumping. Am J Physiol. 1954;179(2):261–7.

    Article  CAS  PubMed  Google Scholar 

  3. Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev. 1955;35(1):123–9.

    Article  CAS  PubMed  Google Scholar 

  4. Guyton AC, Satterfield JH, Harris JW. Dynamics of central venous resistance with observations on static blood pressure. Am J Physiol. 1952;169(3):691–9.

    Article  CAS  PubMed  Google Scholar 

  5. Starr I. Role of “static blood pressure” in abnormal increments of venous pressure, especially in heart failure. II. Clinical and experimental studies. Am J Med Sci. 1940;199:40–55.

    Article  Google Scholar 

  6. Thompson S. The effect of pulmonary inflation and deflation upon the circulation. J Thorac Surg. 1948;17(3):323.

    CAS  PubMed  Google Scholar 

  7. Manteuffel-Szoege L, et al. On the possibility of blood circulation continuing after stopping the heart. J Cardiovasc Surg (Torino). 1966;7(3):201.

    CAS  Google Scholar 

  8. Manteuffel-Szoege L. Remarks on blood flow. (The problem of the specific haemodynamic properties of blood). J Cardiovasc Surg (Torino). 1969;10(1):22.

    CAS  Google Scholar 

  9. Manteuffel-Szoege L. New observations concerning the hemodynamics of deep hypothermia. J Cardiovasc Surg (Torino). 1962;3:316–9.

    Google Scholar 

  10. Manteuffel-Szoege L. Hemodynamic disturbances in normo and hypothermia with excluded heart and during acute heart muscle failure. J Cardiovasc Surg (Torino). 1963;4:551–5.

    CAS  Google Scholar 

  11. Lindsey AW, Guyton AC. Continuous recording of pulmonary blood volume: pulmonary pressure and volume changes. Am J Physiol. 1959;197(5):959–62.

    Article  CAS  PubMed  Google Scholar 

  12. Manteuffel-Szoege L. On stopping and restarting of circulation in deep hypothermia. J Cardiovasc Surg (Torino). 1964;5:76–80.

    CAS  Google Scholar 

  13. Manteuffel-Szoege L. Energy sources of blood circulation and the mechanical action of the heart. Thorax. 1960;15(1):47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Skulec R, et al. Novel patterns of left ventricular mechanical activity during experimental cardiac arrest in pigs. Physiol Res. 2018;67(3):391–9.

    Article  CAS  PubMed  Google Scholar 

  15. Yannopoulos D, et al. Controlled pauses at the initiation of sodium nitroprusside-enhanced cardiopulmonary resuscitation facilitate neurological and cardiac recovery after 15 mins of untreated ventricular fibrillation. Crit Care Med. 2012;40(5):1562–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Adebahr G, Weiler G. [Distribution of blood in the kidney by death from exsanguination (author’s transl)]. Z Rechtsmed. 1977;80(1):9.

    Article  CAS  Google Scholar 

  17. Thudichum I. On the cause of the emptiness of the arteries after death. Assoc Med J. 1855;3(110):122–7.

    PubMed Central  Google Scholar 

  18. Flanagan R, Amin A, Seinen W. Effect of post-mortem changes on peripheral and central whole blood and tissue clozapine and norclozapine concentrations in the domestic pig (Sus scrofa). Forensic Sci Int. 2003;132(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  19. De Letter EA, et al. Post-mortem redistribution of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) in the rabbit. Int J Leg Med. 2002;116(4):216–24.

    Article  Google Scholar 

  20. Pounder DJ, Jones GR. Post-mortem drug redistribution—a toxicological nightmare. Forensic Sci Int. 1990;45(3):253–63.

    Article  CAS  PubMed  Google Scholar 

  21. Adhiyaman V, Adhiyaman S, Sundaram R. The Lazarus phenomenon. J R Soc Med. 2007;100(12):552–7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ben-David B, et al. Survival after failed intraoperative resuscitation: a case of “Lazarus syndrome”. Anesth Anal. 2001;92(3):690.

    Article  CAS  Google Scholar 

  23. Hornby K, Hornby L, Shemie S. A systematic review of autoresuscitation after cardiac arrest. Crit Care Med. 2010;38(5):1246.

    Article  CAS  PubMed  Google Scholar 

  24. Flato UAP, et al. Echocardiography for prognostication during the resuscitation of intensive care unit patients with non-shockable rhythm cardiac arrest. Resuscitation. 2015;92:1–6.

    Article  PubMed  Google Scholar 

  25. Breitkreutz R, et al. Focused echocardiographic evaluation in life support and peri-resuscitation of emergency patients: a prospective trial. Resuscitation. 2010;81(11):1527–33.

    Article  PubMed  Google Scholar 

  26. Meaney PA, et al. Cardiopulmonary resuscitation quality: improving cardiac resuscitation outcomes both inside and outside the hospital. Circulation. 2013;128(4):417–35.

    Article  PubMed  Google Scholar 

  27. Aagaard R, et al. Echocardiography during resuscitation: a paradox of right ventricular dilatation in cardiac arrest caused by hypovolemia and hyperkalemia-a randomized porcine study. Am Heart Assoc; 2016.

    Google Scholar 

  28. Aukland K, Reed R. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev. 1993;73(1):1–78.

    Article  CAS  PubMed  Google Scholar 

  29. Giesecke A Jr, Grande C, Whitten C. Fluid therapy and the resuscitation of traumatic shock. Crit Care Clin. 1990;6(1):61–72.

    Article  PubMed  Google Scholar 

  30. Guyton AC, Granger HJ, Taylor AE. Interstitial fluid pressure. Physiol Rev. 1971;51(3):527–63.

    Article  CAS  PubMed  Google Scholar 

  31. Nadel E. Regulation of body temperature. In: Boron WF, Boulpaep EL, editors. Medical physiology: a cellular and molecular approach. Philadelphia: Saunders; 2003. p. 1231–55.

    Google Scholar 

  32. Agre P, et al. Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol. 1993;265(4):F463–76.

    CAS  PubMed  Google Scholar 

  33. Day RE, et al. Human aquaporins: regulators of transcellular water flow. Biochim Biophys Acta. 2014;1840(5):1492–506.

    Article  CAS  PubMed  Google Scholar 

  34. Verkman AS, Anderson MO, Papadopoulos MC. Aquaporins: important but elusive drug targets. Nat Rev Drug Discov. 2014;13(4):259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brinker T, et al. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014;11(1):10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Davenport HW. Intestinal absorbtion of water. In: Davenport HW, editor. Physiology of the digestive tract. Chicago: Year Book Medical Publishers; 1971. p. 171–82.

    Google Scholar 

  37. Brace RA. Progress toward resolving the controversy of positive vs. negative interstitial fluid pressure. Circ Res. 1981;49(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  38. Guyton AC, Frank M, Abernathy B. A concept of negative interstitial pressure based on pressures in implanted perforated capsules. Circ Res. 1963;12(4):399–414.

    Article  CAS  PubMed  Google Scholar 

  39. Adair TH, et al. Effect of skin concavity on subcutaneous tissue fluid pressure. Am J Physiol. 1991;261(2):H349–53.

    CAS  PubMed  Google Scholar 

  40. Scholander P, Hargens AR, Miller SL. Negative pressure in the interstitial fluid of animals. Science. 1968;161(3839):321–8.

    Article  CAS  PubMed  Google Scholar 

  41. Matthay MA. Resolution of pulmonary edema. Thirty years of progress. Am J Respir Crit Care Med. 2014;189(11):1301–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Udeshi A, Cantie SM, Pierre E. Postobstructive pulmonary edema. J Crit Care. 2010;25(3):538.e1–5.

    Article  Google Scholar 

  43. Fiorelli A, et al. Negative-pressure pulmonary edema presented with concomitant spontaneous pneumomediastinum: Moore meets Macklin. Interact Cardiovasc Thorac Surg. 2011;12(4):633–5.

    Article  PubMed  Google Scholar 

  44. Schumann R, Polaner DM. Massive subcutaneous emphysema and sudden airway compromise after postoperative vomiting. Anesth Anal. 1999;89(3):796.

    CAS  Google Scholar 

  45. Yang S-C, et al. Subcutaneous emphysema and pneumomediastinum secondary to dental extraction: a case report and literature review. Kaohsiung J Med Sci. 2006;22(12):641–5.

    Article  PubMed  Google Scholar 

  46. Bissen-Miyajima H, et al. Role of the endothelial pump in flap adhesion after laser in situ keratomileusis. J Cataract Refract Surg. 2004;30(9):1989–92.

    Article  PubMed  Google Scholar 

  47. Wiig H, Reed R. Compliance of the interstitial space in rats II. Studies on skin. Acta Physiol. 1981;113(3):307–15.

    Article  CAS  Google Scholar 

  48. Reed R, Rodt S. Increased negativity of interstitial fluid pressure during the onset stage of inflammatory edema in rat skin. Am J Physiol. 1991;260(6):H1985–91.

    CAS  PubMed  Google Scholar 

  49. Lund T, Wiig H, Reed R. Acute postburn edema: role of strongly negative interstitial fluid pressure. Am J Physiol. 1988;255(5):H1069–74.

    CAS  PubMed  Google Scholar 

  50. Wiig H, Rubin K, Reed R. New and active role of the interstitium in control of interstitial fluid pressure: potential therapeutic consequences. Acta Anaesthesiol Scand. 2003;47(2):111–21.

    Article  CAS  PubMed  Google Scholar 

  51. Fleischmann W, et al. Vacuum sealing as treatment of soft tissue damage in open fractures. Unfallchirurg. 1993;96(9):488–92.

    CAS  PubMed  Google Scholar 

  52. Argenta LC, Morykwas MJ. Vacuum-assisted closure: a new method for wound control and treatment: clinical experience. Ann Plast Surg. 1997;38(6):563–77.

    Article  CAS  PubMed  Google Scholar 

  53. Venturi ML, et al. Mechanisms and clinical applications of the vacuum-assisted closure (VAC) device. Am J Clin Dermatol. 2005;6(3):185–94.

    Article  PubMed  Google Scholar 

  54. Schintler M. Negative pressure therapy: theory and practice. Diabetes Metab Res Rev. 2012;28(S1):72–7.

    Article  PubMed  Google Scholar 

  55. Morykwas MJ, et al. Vacuum-assisted closure: state of basic research and physiologic foundation. Plast Reconstr Surg. 2006;117(7S):121S–6S.

    Article  CAS  PubMed  Google Scholar 

  56. Prioreschi P. A history of medicine, vol. 3. Omaha: Horatius Press; 1996.

    Google Scholar 

  57. Siegel RE. Galen’s system of physiology and medicine. Basel: Karger; 1968. p. 83–102.

    Google Scholar 

  58. Siegel RE. Respiration and combustion. In: Siegel RE, editor. Galen’s system of physiology and medicine. Basel: Karger; 1968. p. 135–82.

    Google Scholar 

  59. Siegel RE. The substrate of biological function. In: Siegel RE, editor. Galen’s system of physiology and medicine. Basel: Karger; 1968. p. 183–92.

    Google Scholar 

  60. Fuchs T. De motu locali animalium. In: Fuchs T, editor. Mechanization of the heart: Harvey and Descartes. Rocherter: University Rochester Press; 2001. p. 62–75.

    Google Scholar 

  61. Siegel RE. Why Galen and Harvey did not compare the heart to a pump. Am J Cardiol. 1967;20(1):117–21.

    Article  CAS  PubMed  Google Scholar 

  62. Harvey W. Of the motive spirit. In: Whitteridge G, editor. De motu locali animalium. Cambridge: Royal College of Phyicians; 1959. p. 95–105.

    Google Scholar 

  63. Baker AB. Artificial respiration, the history of an idea. Med Hist. 1971;15(4):336–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fishman A. Dynamics of the pulmonary circulation. Handbook of physiology. Circulation. 1963;2:1667–743.

    Google Scholar 

  65. Fuchs T. The mechanization of the heart: Harvey and Descartes, vol. 1. Rochester: University of Rochester Press; 2001. p. 247.

    Google Scholar 

  66. Scholander PF, et al. Sap pressure in vascular plants. Science. 1965;148(3668):339–46.

    Article  CAS  PubMed  Google Scholar 

  67. Brecher GA. Venous return. New York: Grune & Stratton; 1956.

    Google Scholar 

  68. Wiggers CJ. The ciruclation and ciruclation research in perspective. In: Hamilton WF, Dow P, editors. Handbook of physiology. Washington, DC: American Physiological Society; 1962. p. 1–9.

    Google Scholar 

  69. Guyton AC, Jones CE, Coleman TGCE. Circulatory physiology: cardiac output and its regulation. Philadelphia: Saunders; 1973. p. 238.

    Google Scholar 

  70. Brecher GA. Critical review of recent work on ventricular diastolic suction. Circ Res. 1958;6(5):554–66.

    Article  CAS  PubMed  Google Scholar 

  71. Pettigrew JB. Design in nature, vol. 2. London: Longmans, Green and Co; 1908.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Furst, B. (2020). Circulatory and Respiratory Functions of the Blood. In: The Heart and Circulation. Springer, Cham. https://doi.org/10.1007/978-3-030-25062-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25062-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25061-4

  • Online ISBN: 978-3-030-25062-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics