Skip to main content

Regulation of Cardiac Output

  • Chapter
  • First Online:
The Heart and Circulation
  • 1147 Accesses

Abstract

Models are used to simplify a group of observable events into readily understandable concepts. Over the years, numerous models of circulation have been developed in an effort to elucidate fundamental hemodynamic principles. They attest to the ingenuity on the part of the investigators but also point to the complexity of the subject at hand. Because the heart is the organ which is thought to provide the total hydraulic energy to the blood, the idea of the heart as a pressure-generating pump is implicit in most commonly used models. Just how much of a role the heart plays in blood propulsion and the relative contribution of the peripheral circulation in the regulation of cardiac output is a matter of ongoing debate. Because of the multitude of factors which contribute to the regulation of cardiac output, the subject will be approached from the two commonly used perspectives: that of the heart and of the peripheral circulation. The left ventricular (LV) view purports that the heart is the sole source of blood propulsion and hence the principal controller of cardiac output. Guyton’s “venous return” (VR) model posits, on the contrary, that the peripheral circulation is the main determinant of cardiac output and the heart plays a secondary role. LV and VR views are reviewed and critiqued for their conceptual and methodological inconsistencies. Trends in the pharmacologic therapy of heart failure and the declining use of intra-aortic balloon pumps speak in favor of the peripheral circulation as the principal determinant of cardiac output.

The subject of cardiac output regulation is so important that all possible analytical approaches to its understanding deserve widespread support and exploration.

Arthur Guyton (1979)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Like Aristotle, Galileo still considered that circular motion is primary. Descartes and later Newton challenged this idea and held that linear motion was primary. For contemporary discussion on the problem of circular motion, see [14].

  2. 2.

    According to the prevailing theory, venous blood was manufactured from the nutrients in the liver and flowed to the periphery where part of it “coagulated” into organs and tissues (see Fig. 15.4). Harvey proposed the existence of the capillaries which were first observed by Malphigi in 1660, 3 years after Harvey’s death.

  3. 3.

    It is implicit in Descartes’ inductive method that the external world we experience and perceive by the senses is simply an extension, “res extensa” of pure mathematical and geometrical concepts. Descartes’ miraculous mathematical science, scientia mirabilis, opened up new avenues for scientific exploration and technological inventions, but proved detrimental to large areas of scientific inquiry that cannot be captured by mathematics [18]. For further discussion on the significance of the method of science in cardiovascular physiology see Chap. 25.

  4. 4.

    Pascal set out to solve the problem originally raised by Galileo Galilei (1564–1642) in 1638 on the limits of performance of suction pumps that could raise water only about 10 m. Galileo believed that this experiment contradicts Aristotle’s theory of the non-existence of vacuum in nature, i.e., “nature abhors vacuum”. Three years (1641) later Evangelista Torricelli (1608–1648) demonstrated the rise of mercury in evacuated tube and discovered the barometer (Torricellian vacuum). Torricelli ascribed the difference of height between mercury and water column to vacuum and to weight of air pressing on the liquid. Lacking theoretical proof, however, the experiment went unnoticed until Pascal demonstrated in 1647, in a series of ingenious experiments, that fluids rise in evacuated tubes because of the surrounding air, worked out the mathematics of atmospheric pressure and confirmed the existence of vacuum. Twice, on September 23 and 24, 1647 Pascal discussed the existence of vacuum and the concept of fluid pressure with Descartes [20].

  5. 5.

    Well known is Pascal’s reflection that, “the heart has its reasons that reason knows not of…Do you love by reason?” A further consequence of this paradigm was a denial of feeling life to animals and sanctioning of vivisection in animal experimentation.

  6. 6.

    It is noteworthy that over the last 50 years the traditional (positivistic) interpretation of Harvey’s research has been revised by a number of scholars that have adopted a more nuanced approach toward Harvey’s scientific works (see [14,15,16]). It appears that some of the better-known Harvey biographers of the nineteenth and twentieth centuries regarded Harvey’s “forays into cosmic philosophy as the lesser side of his genius,” while seeking to present him as a rational man, whose empirical research proceeded in a logical manner toward the “great” truth, i.e., the discovery of the circulation.

  7. 7.

    The assumption of a linear relation between pressure and flow (as predicted by Ohm’s law) is likewise employed in the mathematical analysis of the arterial pressure and flow waveforms. In place of peripheral resistance (used in steady flow), the concept of (arterial) input impedance is used in oscillatory flow. In analogy with the oscillating (electrical) current, sinusoidal signals of arterial pressure (power spectrum) and flow can be directly related through Fourier transformation [29]. See also Sect. 22.2.

  8. 8.

    Personal note to C. Wiggers, book inscription, photocopy with the author.

References

  1. Magder S. The classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol. 2006;101(5):1533.

    Article  CAS  PubMed  Google Scholar 

  2. Magder S. Point: counterpoint: the classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol. 2006;101(5):1523–5.

    Article  CAS  PubMed  Google Scholar 

  3. Brengelmann G. Counterpoint: the classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is not correct. J Appl Physiol. 2006;101(5):1525–6.

    Article  CAS  PubMed  Google Scholar 

  4. Brengelmann GL. The classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol. 2006;101(5):1532.

    Article  CAS  PubMed  Google Scholar 

  5. Pinsky MR. The classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol. 2006;101(5):1528–30.

    Article  PubMed  Google Scholar 

  6. Guyton AC, Jones CE, Coleman TG. Circulatory physiology: cardiac output and its regulation. Philadelphia: Saunders WB; 1973. p. 253–62.

    Google Scholar 

  7. Fuchs T. De motu locali animalium. In: Mechanization of the heart: Harvey and Descartes. Rocherter: University Rochester Press; 2001. p. 62–75.

    Google Scholar 

  8. Harvey W. On the generation of animals (Translated by R. Willis). In: Hutchins RM, editor. Great Books of the Western World Encycl. Britannica. Chicago: Encyclopedia Britannica; 1952. p. 429–32.

    Google Scholar 

  9. Siegel RE. Why Galen and Harvey did not compare the heart to a pump. Am J Cardiol. 1967;20(1):117–21.

    Article  CAS  PubMed  Google Scholar 

  10. Siegel RE. Galen’s system of physiology and medicine. Basel: Karger; 1968. p. 83–102.

    Google Scholar 

  11. Harvey W. A second disquisition to John Riolan (Translated by R. Willis). In: Hutchins RM, editor. Great Books of the Western World. Chicago: Encyclopedia Britannica; 1952. p. 313–28.

    Google Scholar 

  12. Harvey W. An anatomical disquisition on the motion of the heart and blood. In: Hutchins RM, editor. Animals in Great Books of the Western World. Chicago: Encyclopedia Britannica; 1952. p. 276–8.

    Google Scholar 

  13. Aristotle. Physics, Book 8, Ch. 8. In: Barnes J, editor. Complete works of Aristotle, volume 1: the revised Oxford translation. Princeton: Princeton University Press; 1984. p. 437–42.

    Google Scholar 

  14. Vijaya GK. Celestial dynamics and rotational forces in circular and elliptical motions. 2018. http://www.reciprocalsystem.org/paper/celestial-dynamics-and-rotational-forces-in-circular-and-elliptical-motions; [accessed 08.30.2019].

  15. Pagel W. The philosophy of Circles–Cesalpino–Harvey: a penultimate assessment. J Hist Med Allied Sci. 1957;12(2):140–57.

    Article  CAS  PubMed  Google Scholar 

  16. Harvey W. An anatomical disquisition on the motion of the heart and blood in animals (translated by R. Willis). In: Hutchins RM, editor. Great Books of the Western World. Chicago: Encyclopedia Britannica; 1952. p. 285–6.

    Google Scholar 

  17. Wright T. Circulation: William Harvey’s revolutionary idea. London: Chatto & Windus; 2012. p. 205–9.

    Google Scholar 

  18. Simms E-M. Goethe, Husserl, and the crisis of the European sciences. Janus Head. 2005;8(1):160–72.

    Google Scholar 

  19. Fuchs T. The mechanization of the heart: Harvey and Descartes, vol. 1. Rochester: University of Rochester Press; 2001. p. 247.

    Google Scholar 

  20. Lynch JJ. The vital sign. In: Lynch JJ, editor. The language of the heart: the body’s response to human dialogue. New York: Basic Books (AZ); 1985. p. 29–49.

    Google Scholar 

  21. Hall TS. Ideas of life and matter: studies in the history of general physiology, 600 BC-1900 AD. Chicago: University of Chicago Press; 1969. p. 241–9.

    Google Scholar 

  22. Pickering G. Systemic arterial hypertension. In: Fishman AP, Richards DW, editors. Circulation of the blood men and ideas. Bethesda: American Physiological Society; 1982. p. 487–541.

    Google Scholar 

  23. Husemann F, Wolff O. The anthroposophical approach to medicine. London: Rudolf Steiner Press; 1987. p. 298–414.

    Google Scholar 

  24. Hales S. Statistical essays: containing haemastaticks no. 22, reprinted. History of medicine series, vol 2, 1964. Library of New York Academy of Medicine. New York: Hafner Publishing, 1733.

    Google Scholar 

  25. Booth J. A short history of blood pressure measurement. Proc R Soc Med. 1977;70(11):793–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nichols WW, O’Rourke MF. McDonald’s blood flow in arteries: theoretic, experimental, and clinical principles. Philadelphia: Lea & Fabiger; 1990. p. 12–53.

    Google Scholar 

  27. Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010;87:198–210.

    Article  CAS  PubMed  Google Scholar 

  28. Fishman A. Dynamics of the pulmonary circulation. In: Hamilton WF, Dow P, editors. Handbook of physiology section 2: Circulation, vol. 2. Washington, DC: American Physiological Society; 1963. p. 1667–743.

    Google Scholar 

  29. Westerhof N, Stergiopulos N, Noble MI. Snapshots of hemodynamics: an aid for clinical research and graduate education. New York: Springer; 2010. p. 233–7.

    Book  Google Scholar 

  30. Grodins FS, Stuart WH, Veenstra RL. Performance characteristics of the right heart bypass preparation. Am J Physiol. 1960;198(3):552.

    Article  CAS  PubMed  Google Scholar 

  31. Herndon C, Sagawa K. Combined effects of aortic and right atrial pressures on aortic flow. Am J Physiol. 1969;217(1):65–72.

    Article  CAS  PubMed  Google Scholar 

  32. Levy MN. The cardiac and vascular factors that determine systemic blood flow. Circ Res. 1979;44(6):739.

    Article  CAS  PubMed  Google Scholar 

  33. Calbet J, et al. Effects of ATP-induced leg vasodilation on VO2 peak and leg O2 extraction during maximal exercise in humans. Am J Physiol Regul Integr Comp Physiol. 2006;291(2):R447–53.

    Article  CAS  PubMed  Google Scholar 

  34. Laughlin MH. Skeletal muscle blood flow capacity: role of muscle pump in exercise hyperemia. Am J Physiol. 1987;253(5):H993–H1004.

    CAS  PubMed  Google Scholar 

  35. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134(1):172–8.

    Article  PubMed  Google Scholar 

  36. Michard F. Volume management using dynamic parameters. Chest. 2005;128(4):1902–3.

    Article  PubMed  Google Scholar 

  37. Coudray A, et al. Fluid responsiveness in spontaneously breathing patients: a review of indexes used in intensive care. Crit Care Med. 2005;33(12):2757.

    Article  PubMed  Google Scholar 

  38. Binanay C, et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA. 2005;294(13):1625.

    Article  PubMed  Google Scholar 

  39. Kumar A, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004;32(3):691.

    Article  PubMed  Google Scholar 

  40. Ma TS, et al. Central venous pressure and pulmonary capillary wedge pressure: fresh clinical perspectives from a new model of discordant and concordant heart failure. Tex Heart Inst J. 2011;38(6):627.

    PubMed  PubMed Central  Google Scholar 

  41. Halpern SD, Taichman DB. Misclassification of pulmonary hypertension due to reliance on pulmonary capillary wedge pressure rather than left ventricular end-diastolic pressure. Chest. 2009;136(1):37–43.

    Article  PubMed  Google Scholar 

  42. Bernstein WH, et al. The interpretation of pulmonary artery wedge (pulmonary capillary) pressures. Br Heart J. 1960;22(1):37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weed H. Pulmonary “capillary” wedge pressure not the pressure in the pulmonary capillaries. Chest. 1991;100(4):1138–40.

    Article  CAS  PubMed  Google Scholar 

  44. Samet P, et al. Clinical and physiologic relationships in mitral valve disease. Circulation. 1959;19(4):517–30.

    Article  CAS  PubMed  Google Scholar 

  45. Cowley AW Jr, Guyton AC. Heart rate as a determinant of cardiac output in dogs with arteriovenous fistula. Am J Cardiol. 1971;28(3):321–5.

    Article  PubMed  Google Scholar 

  46. Stein E, et al. The relation of heart rate to cardiovascular dynamics. Pacing by atrial electrodes. Circulation. 1966;33(6):925.

    Article  CAS  PubMed  Google Scholar 

  47. Ross J Jr, Linhart JW, Braunwald E. Effects of changing heart rate in man by electrical stimulation of the right atrium: studies at rest, during exercise, and with isoproterenol. Circulation. 1965;32(4):549–58.

    Article  PubMed  Google Scholar 

  48. Braunwald E, et al. Clinical observations on paired electrical stimulation of the heart:: effects on ventricular performance and heart rate. Am J Med. 1964;37(5):700–11.

    Article  CAS  PubMed  Google Scholar 

  49. Goldberg LI. Use of sympathomimetic amines in heart failure. Am J Cardiol. 1968;22(2):177–82.

    Article  CAS  PubMed  Google Scholar 

  50. Elliott WC, Gorlin R. Isoproterenol in treatment of heart disease hemodynamic effects in circulatory failure. JAMA. 1966;197(5):315–20.

    Article  CAS  PubMed  Google Scholar 

  51. Bayram M, et al. Reassessment of dobutamine, dopamine, and milrinone in the management of acute heart failure syndromes. Am J Cardiol. 2005;96(6A):47G.

    Article  CAS  PubMed  Google Scholar 

  52. Fonarow G. The Acute Decompensated Heart Failure National Registry (ADHERE): opportunities to improve care of patients hospitalized with acute decompensated heart failure. Rev Cardiovasc Med. 2003;4(Suppl 7):S21.

    PubMed  Google Scholar 

  53. Abraham WT, et al. In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications: an analysis from the Acute Decompensated Heart Failure National Registry (ADHERE). J Am Coll Cardiol. 2005;46(1):57–64.

    Article  PubMed  Google Scholar 

  54. Coons JC, McGraw M, Murali S. Pharmacotherapy for acute heart failure syndromes. Am J Health Syst Pharm. 2011;68(1):21–35.

    Article  CAS  PubMed  Google Scholar 

  55. Swedberg K, et al. Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005) The Task Force for the Diagnosis and Treatment of Chronic Heart Failure of the European Society of Cardiology. Eur Heart J. 2005;26(11):1115–40.

    Article  PubMed  Google Scholar 

  56. Kantrowitz A, et al. Mechanical intraaortic cardiac assistance in cardiogenic shock: hemodynamic effects. Arch Surg. 1968;97(6):1000.

    Article  CAS  PubMed  Google Scholar 

  57. O’Connor CM, Rogers JG. Evidence for overturning the guidelines in cardiogenic shock. N Engl J Med. 2012;367(14):1349–50.

    Article  PubMed  CAS  Google Scholar 

  58. Thiele H, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367(14):1287–96.

    Article  CAS  PubMed  Google Scholar 

  59. Sjauw KD, Piek JJ. Is the intra-aortic balloon pump leaking? Lancet. 2013;382(9905):1616–7.

    Article  PubMed  Google Scholar 

  60. Su D, et al. Intra-aortic balloon pump may grant no benefit to improve the mortality of patients with acute myocardial infarction in short and long term: an updated meta-analysis. Medicine. 2015;94(19):e876.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ambrosy AP, et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol. 2014;63(12):1123–33.

    Article  PubMed  Google Scholar 

  62. Go AS, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129:e28–e292.

    Article  PubMed  CAS  Google Scholar 

  63. Roger VL. Epidemiology of heart failure. Circ Res. 2013;113(6):646–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Packer M. Unbelievable folly of clinical trials in heart failure. Circ Heart Fail. 2016;9(4):e002837.

    Article  PubMed  Google Scholar 

  65. Schulze U. Herzinsuffizienztherapie in der modernen Kardiologie - is die Pumpenvorstellung des herzens zutreffend? Der Merkurstab. 2006;59(6):480–7.

    Google Scholar 

  66. Alexander W. Branko Furst’s radical alternative: is the heart moved by the blood, rather than vice versa? P T. 2017;42(1):33–9.

    PubMed  PubMed Central  Google Scholar 

  67. Furst B. The heart: pressure-propulsion pump or organ of impedance? J Cardiothorac Vasc Anesth. 2015;29(6):1688–701.

    Article  PubMed  Google Scholar 

  68. Parker KH. A brief history of arterial wave mechanics. Med Biol Eng Comput. 2009;47(2):111–8.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Weber EH. Ueber die Anwendung der Wellenlehre auf die Lehre vom Kreislaufe des Blutes und insbesondere auf die Pulslehre. Leipzig: Berichte ueber die Verhandlungen, Koenigl. Saechsische Gesellschaft der Wissenschaften; 1850. p. 164–204.

    Google Scholar 

  70. Jacobsohn E, Chorn R, O’Connor M. The role of the vasculature in regulating venous return and cardiac output: historical and graphical approach. Can J Anesth. 1997;44(8):849–67.

    Article  CAS  PubMed  Google Scholar 

  71. Starling EH. The Arris and Gale lectures on some points in the pathology of heart disease, Lecture II. Lancet. 1897;149(3836):652–5.

    Article  Google Scholar 

  72. Bayliss W, Starling EH. Observations on venous pressures and their relationship to capillary pressures. J Physiol. 1894;16(3–4):159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Starling EH. The Linacre lecture on the law of the heart. London: Longmans, Green & Co; 1918.

    Google Scholar 

  74. Starr I, Rawson A. Role of “static blood pressure” in abnormal increments of venous pressure, especially in hear failure. I. Theoretical studies on an improved circulation schema whose pumps obey Starling’s law of the heart. Am J Med Sci. 1940;199:27–39.

    Article  Google Scholar 

  75. Starr I. Role of “static blood pressure” in abnormal increments of venous pressure, especially in heart failure. II. Clinical and experimental studies. Am J Med Sci. 1940;199:40–55.

    Article  Google Scholar 

  76. Patterson S, Starling E. On the mechanical factors which determine the output of the ventricles. J Physiol. 1914;48(5):357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Guyton AC, Jones CE, Coleman TG. Circulatory physiology: cardiac output and its regulation. Philadelphia: Saunders; 1973. p. 238.

    Google Scholar 

  78. Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev. 1955;35(1):123–9.

    Article  CAS  PubMed  Google Scholar 

  79. Guyton AC, et al. Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol. 1957;189(3):609.

    Article  CAS  PubMed  Google Scholar 

  80. Guyton AC, Lindsey AW, Kaufmann BN. Effect of mean circulatory filling pressure and other peripheral circulatory factors on cardiac output. Am J Physiol. 1955;180(3):463–8.

    Article  CAS  PubMed  Google Scholar 

  81. Guyton AC, Polizo D, Armstrong GG. Mean circulatory filling pressure measured immediately after cessation of heart pumping. Am J Physiol. 1954;179(2):261–7.

    Article  CAS  PubMed  Google Scholar 

  82. Brengelmann GL. A critical analysis of the view that right atrial pressure determines venous return. J Appl Physiol. 2003;94(3):849.

    Article  PubMed  Google Scholar 

  83. Guyton AC. The relationship of cardiac output and arterial pressure control. Circulation. 1981;64(6):1079–88.

    Article  CAS  PubMed  Google Scholar 

  84. Caldini P, et al. Effect of epinephrine on pressure, flow, and volume relationships in the systemic circulation of dogs. Circ Res. 1974;34(5):606–23.

    Article  CAS  PubMed  Google Scholar 

  85. Sylvester J, Goldberg H, Permutt S. The role of the vasculature in the regulation of cardiac output. Clin Chest Med. 1983;4(2):111.

    CAS  PubMed  Google Scholar 

  86. Permutt S, Caldini P. Regulation of cardiac output by the circuit: venous return. In: Baan J, Noordegraff A, Raines J, editors. Cardiovasuclar system dynamics. Cambrige: MIT Press; 1987. p. 465–79.

    Google Scholar 

  87. Tyberg JV. How changes in venous capacitance modulate cardiac output. Pflügers Archiv. 2002;445(1):10–7.

    Article  CAS  PubMed  Google Scholar 

  88. Magder S, De Varennes B. Clinical death and the measurement of stressed vascular volume. Crit Care Med. 1998;26(6):1061–4.

    Article  CAS  PubMed  Google Scholar 

  89. Maas JJ, et al. Assessment of venous return curve and mean systemic filling pressure in postoperative cardiac surgery patients. Crit Care Med. 2009;37(3):912.

    Article  PubMed  Google Scholar 

  90. Pinsky MR. Instantaneous venous return curves in an intact canine preparation. J Appl Physiol. 1984;56(3):765–71.

    Article  CAS  PubMed  Google Scholar 

  91. Versprille A, et al. Mean systemic filling pressure as a characteristic pressure for venous return. Pfluegers Arch. 1985;405(3):226–33.

    Article  CAS  Google Scholar 

  92. Hiesmayr M, Jansen JRC, Versprille A. Effects of endotoxin infusion on mean systemic filling pressure and flow resistance to venous return. Pfluegers Arch. 1996;431(5):741–7.

    Article  CAS  Google Scholar 

  93. Schipke J, et al. Static filling pressure in patients during induced ventricular fibrillation. Am J Physiol Heart Circ Physiol. 2003;285(6):H2510.

    Article  CAS  PubMed  Google Scholar 

  94. Berger DC, et al. Effect of PEEP, blood volume, and inspiratory hold maneuvers on venous return. Am J Physiol Heart Circ Physiol. 2016;311(3):H794–806. https://doi.org/10.1152/ajpheart.00931.2015.

    Article  PubMed  Google Scholar 

  95. Henderson WR, et al. Clinical review: Guyton-the role of mean circulatory filling pressure and right atrial pressure in controlling cardiac output. Crit Care. 2010;14(6):243.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Guyton AC. Editor’s note, A. Guytons comment on Levy’s article: The cardiac and vascular factors that determine systemic blood flow. Circ Res. 1979;44(6):746–7.

    Google Scholar 

  97. Reddi B, Carpenter R. Venous excess: a new approach to cardiovascular control and its teaching. J Appl Physiol. 2005;98(1):356.

    Article  CAS  PubMed  Google Scholar 

  98. Brengelmann G. Steady-state venous return: residue in a recent model analysis of the notion that it is driven by elastic recoil of the venous system. J Appl Physiol. 2009;107(1):369.

    Article  CAS  PubMed  Google Scholar 

  99. Brengelmann GL. Learning opportunities in the study of Curran-Everett’s exploration of a classic paper on venous return. Adv Physiol Educ. 2008;32(3):242–3.

    Article  PubMed  Google Scholar 

  100. Beard DA, Feigl EO. Understanding Guyton’s venous return curves. Am J Physiol Heart Circ Physiol. 2011;301(3):H629–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mitchell JR. Is the heart a pressure or flow generator? Possible implications and suggestions for cardiovascular pedagogy. Adv Physiol Educ. 2015;39(3):242–7.

    Article  PubMed  Google Scholar 

  102. Furst B, O'Leary AM. Is the heart a pressure or flow generator? Possible implications and suggestions for cardiovascular pedagogy. Adv Physiol Educ. 2016;40(2):200.

    Article  PubMed  Google Scholar 

  103. Dalmau R, Furst B. Continuing the debate: Branko Furst’s alternative model and the role of the heart. P T. 2017;42(7):443–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Furst, B. (2020). Regulation of Cardiac Output. In: The Heart and Circulation. Springer, Cham. https://doi.org/10.1007/978-3-030-25062-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25062-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25061-4

  • Online ISBN: 978-3-030-25062-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics