Skip to main content

Adiposity Is the Enemy: Body Composition and Insulin Sensitivity

  • Chapter
  • First Online:
Insulin Resistance

Abstract

It was once thought that declining insulin sensitivity was associated with age—the older you get, the more insulin resistant you become. However, since the advent of advanced imaging techniques in the 1980s and 1990s, it has become apparent that insulin resistance is actually associated with the increase in body fatness that occurs during aging, rather than aging per se. In addition, these imaging techniques have fueled the debate about which regional adipose depot—total body fat, subcutaneous fat, visceral fat, or deep subcutaneous fat—contributes most significantly to insulin resistance. This debate, in turn, has spurred investigation into the mechanisms behind the detrimental effect of body fat on insulin sensitivity. So, the goal of this chapter is to unravel some of the literature dedicated to assessing the effect of body composition on insulin sensitivity and to track the effect of body fatness on insulin sensitivity through the human lifespan—from childhood precursors to adult disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helba M, Binkovitz LA. Pediatric body composition analysis with dual-energy X-ray absorptiometry. Pediatr Radiol. 2009;39(7):647–56.

    Article  PubMed  Google Scholar 

  2. Dempster P, Aitkens S. A new air displacement method for the determination of human body composition. Med Sci Sports Exerc. 1995;27(12):1692–7.

    Article  CAS  PubMed  Google Scholar 

  3. Fields DA, Gunatilake R, Kalaitzoglou E. Air displacement plethysmography: cradle to grave. Nutr Clin Pract. 2015;30(2):219–26.

    Article  PubMed  Google Scholar 

  4. Minderico CS, Silva AM, Teixeira PJ, Sardinha LB, Hull HR, Fields DA. Validity of air-displacement plethysmography in the assessment of body composition changes in a 16-month weight loss program. Nutr Metab (Lond). 2006;3:32.

    Article  Google Scholar 

  5. Wang JG, Zhang Y, Chen HE, Li Y, Cheng XG, Xu L, et al. Comparison of two bioelectrical impedance analysis devices with dual energy X-ray absorptiometry and magnetic resonance imaging in the estimation of body composition. J Strength Cond Res. 2013;27(1):236–43.

    Article  CAS  PubMed  Google Scholar 

  6. Verney J, Schwartz C, Amiche S, Pereira B, Thivel D. Comparisons of a multi-frequency bioelectrical impedance analysis to the dual-energy X-ray absorptiometry scan in healthy young adults depending on their physical activity level. J Hum Kinet. 2015;47:73–80.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Eisenmann JC, Heelan KA, Welk GJ. Assessing body composition among 3- to 8-year-old children: anthropometry, BIA, and DXA. Obes Res. 2004;12(10):1633–40.

    Article  PubMed  Google Scholar 

  8. Fors H, Gelander L, Bjarnason R, Albertsson-Wikland K, Bosaeus I. Body composition, as assessed by bioelectrical impedance spectroscopy and dual-energy X-ray absorptiometry, in a healthy paediatric population. Acta Paediatr. 2002;91(7):755–60.

    Article  CAS  PubMed  Google Scholar 

  9. Campanozzi A, Dabbas M, Ruiz JC, Ricour C, Goulet O. Evaluation of lean body mass in obese children. Eur J Pediatr. 2008;167(5):533–40.

    Article  PubMed  Google Scholar 

  10. Wan CS, Ward LC, Halim J, Gow ML, Ho M, Briody JN, et al. Bioelectrical impedance analysis to estimate body composition, and change in adiposity, in overweight and obese adolescents: comparison with dual-energy x-ray absorptiometry. BMC Pediatr. 2014;14:249.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kasvis P, Cohen TR, Loiselle SE, Kim N, Hazell TJ, Vanstone CA, et al. Foot-to-foot bioelectrical impedance accurately tracks direction of adiposity change in overweight and obese 7- to 13-year-old children. Nutr Res. 2015;35(3):206–13.

    Article  CAS  PubMed  Google Scholar 

  12. Verney J, Metz L, Chaplais E, Cardenoux C, Pereira B, Thivel D. Bioelectrical impedance is an accurate method to assess body composition in obese but not severely obese adolescents. Nutr Res. 2016;36(7):663–70.

    Article  CAS  PubMed  Google Scholar 

  13. Talma H, Chinapaw MJ, Bakker B, HiraSing RA, Terwee CB, Altenburg TM. Bioelectrical impedance analysis to estimate body composition in children and adolescents: a systematic review and evidence appraisal of validity, responsiveness, reliability and measurement error. Obes Rev. 2013;14(11):895–905.

    Article  CAS  PubMed  Google Scholar 

  14. Tuan NT, Wang Y. Adiposity assessments: agreement between dual-energy X-ray absorptiometry and anthropometric measures in U.S. children. Obesity (Silver Spring). 2014;22(6):1495–504.

    Article  Google Scholar 

  15. Freedman DS, Dietz WH, Srinivasan SR, Berenson GS. Risk factors and adult body mass index among overweight children: the Bogalusa Heart Study. Pediatrics. 2009;123(3):750–7.

    Article  PubMed  Google Scholar 

  16. de Bruin NC, van Velthoven KA, Stijnen T, Juttmann RE, Degenhart HJ, Visser HK. Body fat and fat-free mass in infants: new and classic anthropometric indexes and prediction equations compared with total-body electrical conductivity. Am J Clin Nutr. 1995;61(6):1195–205.

    Article  PubMed  Google Scholar 

  17. Lingwood BE, Storm van Leeuwen AM, Carberry AE, Fitzgerald EC, Callaway LK, Colditz PB, et al. Prediction of fat-free mass and percentage of body fat in neonates using bioelectrical impedance analysis and anthropometric measures: validation against the PEA POD. Br J Nutr. 2012;107(10):1545–52.

    Article  CAS  PubMed  Google Scholar 

  18. Freedman DS, Horlick M, Berenson GS. A comparison of the Slaughter skinfold-thickness equations and BMI in predicting body fatness and cardiovascular disease risk factor levels in children. Am J Clin Nutr. 2013;98(6):1417–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Miguel-Etayo P, Moreno LA, Santabarbara J, Martin-Matillas M, Piqueras MJ, Rocha-Silva D, et al. Anthropometric indices to assess body-fat changes during a multidisciplinary obesity treatment in adolescents: EVASYON Study. Clin Nutr. [Clinical Study Research Support, Non-U.S. Gov’t]. 2015;34(3):523–8.

    Google Scholar 

  20. Suliga E. Visceral adipose tissue in children and adolescents: a review. Nutr Res Rev. 2009;22(2):137–47.

    Article  PubMed  Google Scholar 

  21. Brodie DA, Stewart AD. Body composition measurement: a hierarchy of methods. J Pediatr Endocrinol Metab. 1999;12(6):801–16.

    Article  CAS  PubMed  Google Scholar 

  22. Jornayvaz FR, Selz R, Tappy L, Theintz GE. Metabolism of oral glucose in children born small for gestational age: evidence for an impaired whole body glucose oxidation. Metabolism. 2004;53(7):847–51.

    Article  CAS  PubMed  Google Scholar 

  23. Ibanez L, Ong K, Dunger DB, de Zegher F. Early development of adiposity and insulin resistance after catch-up weight gain in small-for-gestational-age children. J Clin Endocrinol Metab. 2006;91(6):2153–8.

    Article  CAS  PubMed  Google Scholar 

  24. Soto N, Bazaes RA, Pena V, Salazar T, Avila A, Iniguez G, et al. Insulin sensitivity and secretion are related to catch-up growth in small-for-gestational-age infants at age 1 year: results from a prospective cohort. J Clin Endocrinol Metab. 2003;88(8):3645–50.

    Article  CAS  PubMed  Google Scholar 

  25. Kensara OA, Wootton SA, Phillips DI, Patel M, Jackson AA, Elia M, et al. Fetal programming of body composition: relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen. Am J Clin Nutr. 2005;82(5):980–7.

    Article  CAS  PubMed  Google Scholar 

  26. Euser AM, Finken MJ, Keijzer-Veen MG, Hille ET, Wit JM, Dekker FW, et al. Associations between prenatal and infancy weight gain and BMI, fat mass, and fat distribution in young adulthood: a prospective cohort study in males and females born very preterm. Am J Clin Nutr. 2005;81(2):480–7.

    Article  CAS  PubMed  Google Scholar 

  27. Finken MJ, Keijzer-Veen MG, Dekker FW, Frolich M, Hille ET, Romijn JA, et al. Preterm birth and later insulin resistance: effects of birth weight and postnatal growth in a population based longitudinal study from birth into adult life. Diabetologia. 2006;49(3):478–85.

    Article  CAS  PubMed  Google Scholar 

  28. Bhargava SK, Sachdev HS, Fall CH, Osmond C, Lakshmy R, Barker DJ, et al. Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. [see comment]. N Engl J Med. 2004;350(9):865–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wadsworth M, Butterworth S, Marmot M, Ecob R, Hardy R. Early growth and type 2 diabetes: evidence from the 1946 British birth cohort. Diabetologia. 2005;48(12):2505–10.

    Article  CAS  PubMed  Google Scholar 

  30. Crowther NJ, Cameron N, Trusler J, Gray IP. Association between poor glucose tolerance and rapid post natal weight gain in seven-year-old children. Diabetologia. 1998;41(10):1163–7.

    Article  CAS  PubMed  Google Scholar 

  31. Ong KK, Dunger DB. Birth weight, infant growth and insulin resistance. Eur J Endocrinol. 2004;151(Suppl 3):U131–9.

    Article  CAS  PubMed  Google Scholar 

  32. Salgin B, Norris SA, Prentice P, Pettifor JM, Richter LM, Ong KK, et al. Even transient rapid infancy weight gain is associated with higher BMI in young adults and earlier menarche. Int J Obes (Lond). 2015;39(6):939–44.

    Article  CAS  Google Scholar 

  33. Demerath EW, Reed D, Choh AC, Soloway L, Lee M, Czerwinski SA, et al. Rapid postnatal weight gain and visceral adiposity in adulthood: the Fels Longitudinal Study. Obesity (Silver Spring). 2009;17(11):2060–6.

    Article  Google Scholar 

  34. Jeffery AN, Metcalf BS, Hosking J, Murphy MJ, Voss LD, Wilkin TJ. Little evidence for early programming of weight and insulin resistance for contemporary children: EarlyBird Diabetes Study report 19. Pediatrics. 2006;118(3):1118–23.

    Article  PubMed  Google Scholar 

  35. Dwyer T, Blizzard L, Venn A, Stankovich JM, Ponsonby AL, Morley R. Syndrome X in 8-y-old Australian children: stronger associations with current body fatness than with infant size or growth. Int J Obes Relat Metab Disord. 2002;26(10):1301–9.

    Article  CAS  PubMed  Google Scholar 

  36. Fabricius-Bjerre S, Jensen RB, Faerch K, Larsen T, Molgaard C, Michaelsen KF, et al. Impact of birth weight and early infant weight gain on insulin resistance and associated cardiovascular risk factors in adolescence. PLoS One. 2011;6(6):e20595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garemo M, Palsdottir V, Strandvik B. Metabolic markers in relation to nutrition and growth in healthy 4-y-old children in Sweden. Am J Clin Nutr. 2006;84(5):1021–6.

    Article  CAS  PubMed  Google Scholar 

  38. Cruz ML, Goran MI. The metabolic syndrome in children and adolescents. Curr Diab Rep. 2004;4(1):53–62.

    Article  PubMed  Google Scholar 

  39. Sinha R, Fisch G, Teague B, Tamborlane WV, Banyas B, Allen K, et al. Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. [see comment][erratum appears in N Engl J Med 2002 May 30;346(22):1756 Note: Correction of dosage error in abstract.]. N Engl J Med. 2002;346(11):802–10.

    Article  CAS  PubMed  Google Scholar 

  40. Lambert M, Paradis G, O’Loughlin J, Delvin EE, Hanley JA, Levy E. Insulin resistance syndrome in a representative sample of children and adolescents from Quebec, Canada. [see comment]. Int J Obes Relat Metab Disord. 2004;28(7):833–41.

    Article  CAS  PubMed  Google Scholar 

  41. Ventura AK, Loken E, Birch LL. Risk profiles for metabolic syndrome in a nonclinical sample of adolescent girls. Pediatrics. 2006;118(6):2434–42.

    Article  PubMed  Google Scholar 

  42. Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, et al. Obesity and the metabolic syndrome in children and adolescents. [see comment]. N Engl J Med. 2004;350(23):2362–74.

    Article  CAS  PubMed  Google Scholar 

  43. Rolland-Cachera MF, Deheeger M, Maillot M, Bellisle F. Early adiposity rebound: causes and consequences for obesity in children and adults. Int J Obes (Lond). 2006;30(Suppl 4):S11–7.

    Article  Google Scholar 

  44. Krekoukia M, Nassis G, Psarra G, Skenderi K, Chrousos G, Sidossis L. Elevated total and central adiposity and low physical activity are associated with insulin resistance in children. Metabolism. 2007;56:206–13.

    Article  CAS  PubMed  Google Scholar 

  45. Tanaka Y, Kikuchi T, Nagasaki K, Hiura M, Ogawa Y, Uchiyama M. Lower birth weight and visceral fat accumulation are related to hyperinsulinemia and insulin resistance in obese Japanese children. Hypertens Res. 2005;28(6):529–36.

    Article  CAS  PubMed  Google Scholar 

  46. Tauman R, O’Brien LM, Ivanenko A, Gozal D. Obesity rather than severity of sleep-disordered breathing as the major determinant of insulin resistance and altered lipidemia in snoring children. Pediatrics. 2005;116(1):e66–73.

    Article  PubMed  Google Scholar 

  47. Travers SH, Jeffers BW, Bloch CA, Hill JO, Eckel RH. Gender and Tanner stage differences in body composition and insulin sensitivity in early pubertal children. J Clin Endocrinol Metab. 1995;80(1):172–8.

    CAS  PubMed  Google Scholar 

  48. Cook JS, Hoffman RP, Stene MA, Hansen JR. Effects of maturational stage on insulin sensitivity during puberty. J Clin Endocrinol Metab. 1993;77(3):725–30.

    CAS  PubMed  Google Scholar 

  49. Goran MI, Gower BA. Longitudinal study on pubertal insulin resistance. Diabetes. 2001;50(11):2444–50.

    Article  CAS  PubMed  Google Scholar 

  50. Hannon TS, Janosky J, Arslanian SA. Longitudinal study of physiologic insulin resistance and metabolic changes of puberty. Pediatr Res. 2006;60(6):759–63.

    Article  CAS  PubMed  Google Scholar 

  51. Roemmich JN, Clark PA, Lusk M, Friel A, Weltman A, Epstein LH, et al. Pubertal alterations in growth and body composition. VI. Pubertal insulin resistance: relation to adiposity, body fat distribution and hormone release. Int J Obes Relat Metab Disord. 2002;26(5):701–9.

    Article  CAS  PubMed  Google Scholar 

  52. Wu DM, Chu NF, Shen MH, Wang SC. Obesity, plasma high sensitivity C-reactive protein levels and insulin resistance status among school children in Taiwan. Clin Biochem. 2006;39(8):810–5.

    Article  CAS  PubMed  Google Scholar 

  53. Moran A, Jacobs DR Jr, Steinberger J, Hong CP, Prineas R, Luepker R, et al. Insulin resistance during puberty: results from clamp studies in 357 children. Diabetes. 1999;48(10):2039–44.

    Article  CAS  PubMed  Google Scholar 

  54. Ball GD, Weigensberg MJ, Cruz ML, Shaibi GQ, Kobaissi HA, Goran MI. Insulin sensitivity, insulin secretion and beta-cell function during puberty in overweight Hispanic children with a family history of type 2 diabetes. Int J Obes. 2005;29(12):1471–7.

    Article  CAS  Google Scholar 

  55. Sinaiko AR, Jacobs DR Jr, Steinberger J, Moran A, Luepker R, Rocchini AP, et al. Insulin resistance syndrome in childhood: associations of the euglycemic insulin clamp and fasting insulin with fatness and other risk factors. J Pediatr. 2001;139(5):700–7.

    Article  CAS  PubMed  Google Scholar 

  56. Liu J, Wade T, Tan H. Cardiovascular risk factors and anthropometric measurements of adolescent body composition: a cross-sectional analysis of the third National Health and Nutrition Survey. Int J Obes (Lond). 2007;31:59–64.

    Article  CAS  Google Scholar 

  57. Retnakaran R, Zinman B, Connelly PW, Harris SB, Hanley AJ. Nontraditional cardiovascular risk factors in pediatric metabolic syndrome. [see comment]. J Pediatr. 2006;148(2):176–82.

    Article  PubMed  Google Scholar 

  58. Lee S, Bacha F, Gungor N, Arslanian SA. Waist circumference is an independent predictor of insulin resistance in black and white youths. J Pediatr. 2006;148(2):188–94.

    Article  CAS  PubMed  Google Scholar 

  59. Bacha F, Saad R, Gungor N, Arslanian SA. Are obesity-related metabolic risk factors modulated by the degree of insulin resistance in adolescents? Diabetes Care. 2006;29(7):1599–604.

    Article  PubMed  Google Scholar 

  60. Kelsey MM, Zeitler PS. Insulin resistance of puberty. Curr Diab Rep. 2016;16(7):64.

    Article  PubMed  CAS  Google Scholar 

  61. RISE Consortium. Metabolic contrasts between youth and adults with impaired glucose tolerance or recently diagnosed type 2 diabetes: I. Observations using the hyperglycemic clamp. Diabetes Care. 2018;41(8):1696–706.

    Article  CAS  Google Scholar 

  62. Pearce MS, Unwin NC, Parker L, Alberti KG. Life course determinants of insulin secretion and sensitivity at age 50 years: the Newcastle thousand families study. Diabetes Metab Res Rev. 2006;22(2):118–25.

    Article  CAS  PubMed  Google Scholar 

  63. Vega GL, Adams-Huet B, Peshock R, Willett D, Shah B, Grundy SM. Influence of body fat content and distribution on variation in metabolic risk. J Clin Endocrinol Metab. 2006;91(11):4459–66.

    Article  CAS  PubMed  Google Scholar 

  64. dos Santos RE, Aldrighi JM, Lanz JR, Ferezin PC, Marone MM. Relationship of body fat distribution by waist circumference, dual-energy X-ray absorptiometry and ultrasonography to insulin resistance by homeostasis model assessment and lipid profile in obese and non-obese postmenopausal women. Gynecol Endocrinol. 2005;21(5):295–301.

    Article  PubMed  CAS  Google Scholar 

  65. Bryhni B, Jenssen TG, Olafsen K, Bendikssen A. Oxidative and nonoxidative glucose disposal in elderly vs younger men with similar and smaller body mass indices and waist circumferences. Metabolism. 2005;54(6):748–55.

    Article  CAS  PubMed  Google Scholar 

  66. Fields DA, Gilchrist JM, Catalano PM, Gianni ML, Roggero PM, Mosca F. Longitudinal body composition data in exclusively breast-fed infants: a multicenter study. Obesity (Silver Spring). 2011;19(9):1887–91.

    Article  Google Scholar 

  67. Slinger J, van Breda E, Keizer H, Rump P, Hornstra G, Kuipers H. Insulin resistance, physical fitness, body composition and leptin concentration in 7–8 year-old children. J Sci Med Sport. 2008;11(2):132–8. (Epub ahead of print).

    Article  PubMed  Google Scholar 

  68. Garnett SP, Hogler W, Blades B, Baur LA, Peat J, Lee J, et al. Relation between hormones and body composition, including bone, in prepubertal children. Am J Clin Nutr. 2004;80(4):966–72.

    Article  CAS  PubMed  Google Scholar 

  69. He Q, Horlick M, Thornton J, Wang J, Pierson RN Jr, Heshka S, et al. Sex-specific fat distribution is not linear across pubertal groups in a multiethnic study. Obes Res. 2004;12(4):725–33.

    Article  PubMed  Google Scholar 

  70. Arfai K, Pitukcheewanont PD, Goran MI, Tavare CJ, Heller L, Gilsanz V. Bone, muscle, and fat: sex-related differences in prepubertal children. Radiology. 2002;224(2):338–44.

    Article  PubMed  Google Scholar 

  71. Samsell L, Regier M, Walton C, Cottrell L. Importance of android/gynoid fat ratio in predicting metabolic and cardiovascular disease risk in normal weight as well as overweight and obese children. J Obes. 2014;2014:846578.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Aucouturier J, Meyer M, Thivel D, Taillardat M, Duche P. Effect of android to gynoid fat ratio on insulin resistance in obese youth. Arch Pediatr Adolesc Med. 2009;163(9):826–31.

    Article  PubMed  Google Scholar 

  73. Goran MI, Nagy TR, Treuth MS, Trowbridge C, Dezenberg C, McGloin A, et al. Visceral fat in white and African American prepubertal children. Am J Clin Nutr. 1997;65(6):1703–8.

    Article  CAS  PubMed  Google Scholar 

  74. Yajnik CS, Lubree HG, Rege SS, Naik SS, Deshpande JA, Deshpande SS, et al. Adiposity and hyperinsulinemia in Indians are present at birth. J Clin Endocrinol Metab. 2002;87(12):5575–80.

    Article  CAS  PubMed  Google Scholar 

  75. Brambilla P, Bedogni G, Moreno LA, Goran MI, Gutin B, Fox KR, et al. Crossvalidation of anthropometry against magnetic resonance imaging for the assessment of visceral and subcutaneous adipose tissue in children. Int J Obes (Lond). 2006;30(1):23–30.

    Article  CAS  Google Scholar 

  76. Ehtisham S, Crabtree N, Clark P, Shaw N, Barrett T. Ethnic differences in insulin resistance and body composition in United Kingdom adolescents. J Clin Endocrinol Metab. 2005;90(7):3963–9.

    Article  CAS  PubMed  Google Scholar 

  77. Whincup PH, Gilg JA, Owen CG, Odoki K, Alberti KG, Cook DG. British South Asians aged 13–16 years have higher fasting glucose and insulin levels than Europeans. Diabet Med. 2005;22(9):1275–7.

    Article  CAS  PubMed  Google Scholar 

  78. Castro AV, Kolka CM, Kim SP, Bergman RN. Obesity, insulin resistance and comorbidities? Mechanisms of association. Arq Bras Endocrinol Metabol. 2014;58(6):600–9.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116(1):39–48.

    Article  PubMed  Google Scholar 

  80. Bosch TA, Steinberger J, Sinaiko AR, Moran A, Jacobs DR Jr, Kelly AS, et al. Identification of sex-specific thresholds for accumulation of visceral adipose tissue in adults. Obesity (Silver Spring). 2015;23(2):375–82.

    Article  Google Scholar 

  81. Saelens BE, Seeley RJ, van Schaick K, Donnelly LF, O’Brien KJ. Visceral abdominal fat is correlated with whole-body fat and physical activity among 8-y-old children at risk of obesity. Am J Clin Nutr. 2007;85(1):46–53.

    Article  CAS  PubMed  Google Scholar 

  82. Guldiken S, Tuncbilek N, Okten O, Arikan E, Tugrul A. Visceral fat thickness determined using ultrasonography is associated with anthropometric and clinical parameters of metabolic syndrome. Int J Clin Pract. 2006;60:1576–81.

    Article  CAS  PubMed  Google Scholar 

  83. Owens S, Gutin B, Barbeau P, Litaker M, Allison J, Humphries M, et al. Visceral adipose tissue and markers of the insulin resistance syndrome in obese black and white teenagers. Obes Res. 2000;8(4):287–93.

    Article  CAS  PubMed  Google Scholar 

  84. Daniels SR, Jacobson MS, McCrindle BW, Eckel RH, Sanner BM. American Heart Association childhood obesity research summit report. Circulation. 2009;119(15):e489–517.

    PubMed  Google Scholar 

  85. Syme C, Abrahamowicz M, Leonard GT, Perron M, Pitiot A, Qiu X, et al. Intra-abdominal adiposity and individual components of the metabolic syndrome in adolescence: sex differences and underlying mechanisms. Arch Pediatr Adolesc Med. 2008;162(5):453–61.

    Article  PubMed  Google Scholar 

  86. Sierra-Johnson J, Johnson BD, Bailey KR, Turner ST. Relationships between insulin sensitivity and measures of body fat in asymptomatic men and women. Obes Res. 2004;12(12):2070–7.

    Article  PubMed  Google Scholar 

  87. Mazzali G, Di Francesco V, Zoico E, Fantin F, Zamboni G, Benati C, et al. Interrelations between fat distribution, muscle lipid content, adipocytokines, and insulin resistance: effect of moderate weight loss in older women. Am J Clin Nutr. 2006;84(5):1193–9.

    Article  CAS  PubMed  Google Scholar 

  88. Salmenniemi U, Ruotsalainen E, Vanttinen M, Vauhkonen I, Pihlajamaki J, Kainulainen S, et al. High amount of visceral fat mass is associated with multiple metabolic changes in offspring of type 2 diabetic patients. Int J Obes. 2005;29(12):1464–70.

    Article  CAS  Google Scholar 

  89. Stears A, O’Rahilly S, Semple RK, Savage DB. Metabolic insights from extreme human insulin resistance phenotypes. Best Pract Res Clin Endocrinol Metab. 2012;26(2):145–57.

    Article  CAS  PubMed  Google Scholar 

  90. Cali AM, Caprio S. Ectopic fat deposition and the metabolic syndrome in obese children and adolescents. Horm Res. 2009;71(Suppl 1):2–7.

    CAS  PubMed  Google Scholar 

  91. Bennett B, Larson-Meyer DE, Ravussin E, Volaufova J, Soros A, Cefalu WT, et al. Impaired insulin sensitivity and elevated ectopic fat in healthy obese vs. nonobese prepubertal children. Obesity (Silver Spring). 2012;20(2):371–5.

    Article  CAS  Google Scholar 

  92. Pacifico L, Di Martino M, Anania C, Andreoli GM, Bezzi M, Catalano C, et al. Pancreatic fat and beta-cell function in overweight/obese children with nonalcoholic fatty liver disease. World J Gastroenterol. 2015;21(15):4688–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Salans LB, Knittle JL, Hirsch J. The role of adipose cell size and adipose tissue insulin sensitivity in the carbohydrate intolerance of human obesity. J Clin Invest. 1968;47(1):153–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Stern JS, Batchelor BR, Hollander N, Cohn CK, Hirsch J. Adipose-cell size and immunoreactive insulin levels in obese and normal-weight adults. Lancet. 1972;2(7784):948–51.

    Article  CAS  PubMed  Google Scholar 

  95. Henninger AM, Eliasson B, Jenndahl LE, Hammarstedt A. Adipocyte hypertrophy, inflammation and fibrosis characterize subcutaneous adipose tissue of healthy, non-obese subjects predisposed to type 2 diabetes. PLoS One. 2014;9(8):e105262.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Ryden M, Andersson DP, Bergstrom IB, Arner P. Adipose tissue and metabolic alterations: regional differences in fat cell size and number matter, but differently: a cross-sectional study. J Clin Endocrinol Metab. 2014;99(10):E1870–6.

    Article  CAS  PubMed  Google Scholar 

  97. Skurk T, Alberti-Huber C, Herder C, Hauner H. Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab. 2007;92(3):1023–33.

    Article  CAS  PubMed  Google Scholar 

  98. Drolet R, Belanger C, Fortier M, Huot C, Mailloux J, Legare D, et al. Fat depot-specific impact of visceral obesity on adipocyte adiponectin release in women. Obesity (Silver Spring). 2009;17(3):424–30.

    Article  CAS  Google Scholar 

  99. Michaud A, Boulet MM, Veilleux A, Noel S, Paris G, Tchernof A. Abdominal subcutaneous and omental adipocyte morphology and its relation to gene expression, lipolysis and adipocytokine levels in women. Metabolism. 2014;63(3):372–81.

    Article  CAS  PubMed  Google Scholar 

  100. Gornicka A, Fettig J, Eguchi A, Berk MP, Thapaliya S, Dixon LJ, et al. Adipocyte hypertrophy is associated with lysosomal permeability both in vivo and in vitro: role in adipose tissue inflammation. Am J Physiol Endocrinol Metab. 2012;303(5):E597–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Landgraf K, Rockstroh D, Wagner IV, Weise S, Tauscher R, Schwartze JT, et al. Evidence of early alterations in adipose tissue biology and function and its association with obesity-related inflammation and insulin resistance in children. Diabetes. 2015;64(4):1249–61.

    Article  CAS  PubMed  Google Scholar 

  102. Lessard J, Laforest S, Pelletier M, Leboeuf M, Blackburn L, Tchernof A. Low abdominal subcutaneous preadipocyte adipogenesis is associated with visceral obesity, visceral adipocyte hypertrophy, and a dysmetabolic state. Adipocytes. 2014;3(3):197–205.

    Article  CAS  Google Scholar 

  103. Van Harmelen V, Rohrig K, Hauner H. Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects. Metabolism. 2004;53(5):632–7.

    Article  PubMed  CAS  Google Scholar 

  104. Kursawe R, Eszlinger M, Narayan D, Liu T, Bazuine M, Cali AM, et al. Cellularity and adipogenic profile of the abdominal subcutaneous adipose tissue from obese adolescents: association with insulin resistance and hepatic steatosis. Diabetes. 2010;59(9):2288–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Larson-Meyer DE, Heilbronn LK, Redman LM, Newcomer BR, Frisard MI, Anton S, et al. Effect of calorie restriction with or without exercise on insulin sensitivity, beta-cell function, fat cell size, and ectopic lipid in overweight subjects. Diabetes Care. 2006;29(6):1337–44.

    Article  PubMed  Google Scholar 

  106. Shadid S, Stehouwer CD, Jensen MD. Diet/exercise versus pioglitazone: effects of insulin sensitization with decreasing or increasing fat mass on adipokines and inflammatory markers. J Clin Endocrinol Metab. 2006;91(9):3418–25.

    Article  CAS  PubMed  Google Scholar 

  107. Ye J. Mechanisms of insulin resistance in obesity. Front Med. 2013;7(1):14–24.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Nielsen ST, Lehrskov-Schmidt L, Krogh-Madsen R, Solomon TP, Lehrskov-Schmidt L, Holst JJ, et al. Tumour necrosis factor-alpha infusion produced insulin resistance but no change in the incretin effect in healthy volunteers. Diabetes Metab Res Rev. 2013;29(8):655–63.

    Article  CAS  PubMed  Google Scholar 

  109. Kursawe R, Dixit VD, Scherer PE, Santoro N, Narayan D, Gordillo R, et al. A role of the inflammasome in the low storage capacity of the abdominal subcutaneous adipose tissue in obese adolescents. Diabetes. 2016;65(3):610–8.

    Article  CAS  PubMed  Google Scholar 

  110. Szanto I, Kahn CR. Selective interaction between leptin and insulin signaling pathways in a hepatic cell line. Proc Natl Acad Sci USA. 2000;97(5):2355–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gonzaga NC, Medeiros CC, de Carvalho DF, Alves JG. Leptin and cardiometabolic risk factors in obese children and adolescents. J Paediatr Child Health. 2014;50(9):707–12.

    Article  PubMed  Google Scholar 

  112. Jois A, Navarro P, Ortega-Senovilla H, Gavela-Perez T, Soriano-Guillen L, Garces C. Relationship of high leptin levels with an adverse lipid and insulin profile in 6–8 year-old children in Spain. Nutr Metab Cardiovasc Dis. 2015;25(12):1111–6.

    Article  CAS  PubMed  Google Scholar 

  113. Catli G, Anik A, Tuhan HU, Kume T, Bober E, Abaci A. The relation of leptin and soluble leptin receptor levels with metabolic and clinical parameters in obese and healthy children. Peptides. 2014;56:72–6.

    Article  CAS  PubMed  Google Scholar 

  114. Miras M, Ochetti M, Martin S, Silvano L, Sobrero G, Castro L, et al. Serum levels of adiponectin and leptin in children born small for gestational age: relation to insulin sensitivity parameters. J Pediatr Endocrinol Metab. 2010;23(5):463–71.

    Article  CAS  PubMed  Google Scholar 

  115. Martinez-Aguayo A, Capurro T, Pena V, Iniguez G, Hernandez MI, Avila A, et al. Comparison of leptin levels, body composition and insulin sensitivity and secretion by OGTT in healthy, early pubertal girls born at either appropriate- or small-for-gestational age. Clin Endocrinol (Oxf). 2007;67(4):526–32.

    CAS  Google Scholar 

  116. Bacha F, Saad R, Gungor N, Arslanian SA. Adiponectin in youth: relationship to visceral adiposity, insulin sensitivity, and beta-cell function. Diabetes Care. 2004;27(2):547–52.

    Article  CAS  PubMed  Google Scholar 

  117. Lee S, Bacha F, Gungor N, Arslanian SA. Racial differences in adiponectin in youth: relationship to visceral fat and insulin sensitivity. Diabetes Care. 2006;29(1):51–6.

    Article  CAS  PubMed  Google Scholar 

  118. Stefan N, Vozarova B, Funahashi T, Matsuzawa Y, Weyer C, Lindsay RS, et al. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans. Diabetes. 2002;51(6):1884–8.

    Article  CAS  PubMed  Google Scholar 

  119. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010;142(2):296–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Levinger I, Lin X, Zhang X, Brennan-Speranza TC, Volpato B, Hayes A, et al. The effects of muscle contraction and recombinant osteocalcin on insulin sensitivity ex vivo. Osteoporos Int. 2016;27(2):653–63.

    Article  CAS  PubMed  Google Scholar 

  121. Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone. 2012;50(2):568–75.

    Article  CAS  PubMed  Google Scholar 

  122. Saleem U, Mosley TH Jr, Kullo IJ. Serum osteocalcin is associated with measures of insulin resistance, adipokine levels, and the presence of metabolic syndrome. Arterioscler Thromb Vasc Biol. 2010;30(7):1474–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Reinehr T, Roth CL. A new link between skeleton, obesity and insulin resistance: relationships between osteocalcin, leptin and insulin resistance in obese children before and after weight loss. Int J Obes (Lond). 2010;34(5):852–8.

    Article  CAS  Google Scholar 

  124. Garanty-Bogacka B, Syrenicz M, Rac M, Krupa B, Czaja-Bulsa G, Walczak M, et al. Association between serum osteocalcin, adiposity and metabolic risk in obese children and adolescents. Endokrynol Pol. 2013;64(5):346–52.

    Article  CAS  PubMed  Google Scholar 

  125. Poomthavorn P, Nantarakchaikul P, Mahachoklertwattana P, Chailurkit LO, Khlairit P. Effects of correction of vitamin D insufficiency on serum osteocalcin and glucose metabolism in obese children. Clin Endocrinol (Oxf). 2014;80(4):516–23.

    Article  CAS  Google Scholar 

  126. Kanazawa I, Yamaguchi T, Tada Y, Yamauchi M, Yano S, Sugimoto T. Serum osteocalcin level is positively associated with insulin sensitivity and secretion in patients with type 2 diabetes. Bone. 2011;48(4):720–5.

    Article  CAS  PubMed  Google Scholar 

  127. Gao Y, Zong K, Gao Z, Rubin MR, Chen J, Heymsfield SB, et al. Magnetic resonance imaging-measured bone marrow adipose tissue area is inversely related to cortical bone area in children and adolescents aged 5–18 years. J Clin Densitom. [Research Support, N.I.H., Extramural]. 2015;18(2):203–8.

    Article  Google Scholar 

  128. Cole ZA, Harvey NC, Kim M, Ntani G, Robinson SM, Inskip HM, et al. Increased fat mass is associated with increased bone size but reduced volumetric density in pre pubertal children. Bone. [Research Support, Non-U.S. Gov’t]. 2012;50(2):562–7.

    CAS  Google Scholar 

  129. Dimitri P, Wales JK, Bishop N. Fat and bone in children: differential effects of obesity on bone size and mass according to fracture history. J Bone Miner Res. [Research Support, Non-U.S. Gov’t]. 2010;25(3):527–36.

    Article  Google Scholar 

  130. Martin RM, Holly JM, Davey Smith G, Gunnell D. Associations of adiposity from childhood into adulthood with insulin resistance and the insulin-like growth factor system: 65-year follow-up of the Boyd Orr Cohort. J Clin Endocrinol Metab. 2006;91(9):3287–95.

    Article  CAS  PubMed  Google Scholar 

  131. Srinivasan SR, Myers L, Berenson GS. Predictability of childhood adiposity and insulin for developing insulin resistance syndrome (syndrome X) in young adulthood: the Bogalusa Heart Study. Diabetes. 2002;51(1):204–9.

    Article  CAS  PubMed  Google Scholar 

  132. Morrison JA, Friedman LA, Harlan WR, Harlan LC, Barton BA, Schreiber GB, et al. Development of the metabolic syndrome in black and white adolescent girls: a longitudinal assessment. Pediatrics. 2005;116(5):1178–82.

    Article  PubMed  Google Scholar 

  133. Srinivasan SR, Myers L, Berenson GS. Changes in metabolic syndrome variables since childhood in prehypertensive and hypertensive subjects: the Bogalusa Heart Study. [see comment]. Hypertension. 2006;48(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  134. Freedman DS, Khan LK, Serdula MK, Dietz WH, Srinivasan SR, Berenson GS. The relation of childhood BMI to adult adiposity: the Bogalusa Heart Study. Pediatrics. 2005;115(1):22–7.

    Article  PubMed  Google Scholar 

  135. Eisenmann JC, Welk GJ, Wickel EE, Blair SN, Aerobics Center Longitudinal Study. Stability of variables associated with the metabolic syndrome from adolescence to adulthood: the Aerobics Center Longitudinal Study. Am J Hum Biol. 2004;16(6):690–6.

    Article  PubMed  Google Scholar 

  136. Sivanandam S, Sinaiko AR, Jacobs DR Jr, Steffen L, Moran A, Steinberger J. Relation of increase in adiposity to increase in left ventricular mass from childhood to young adulthood. Am J Cardiol. 2006;98(3):411–5.

    Article  PubMed  Google Scholar 

  137. Treuth MS, Hunter GR, Figueroa-Colon R, Goran MI. Effects of strength training on intra-abdominal adipose tissue in obese prepubertal girls. Med Sci Sports Exerc. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]. 1998;30(12):1738–43.

    CAS  Google Scholar 

  138. Figueroa-Colon R, Mayo MS, Aldridge RA, Winder T, Weinsier RL. Body composition changes in Caucasian and African American children and adolescents with obesity using dual-energy X-ray absorptiometry measurements after a 10-week weight loss program. Obes Res. [Research Support, U.S. Gov’t, P.H.S.]. 1998;6(5):326–31.

    CAS  Google Scholar 

  139. Reinehr T, Kiess W, Kapellen T, Andler W. Insulin sensitivity among obese children and adolescents, according to degree of weight loss. [see comment]. Pediatrics. 2004;114(6):1569–73.

    Article  PubMed  Google Scholar 

  140. Reinehr T, Roth CL, Menke T, Andler W. Resistin concentrations before and after weight loss in obese children. Int J Obes. 2006;30(2):297–301.

    Article  CAS  Google Scholar 

  141. Carrel AL, Clark RR, Peterson SE, Nemeth BA, Sullivan J, Allen DB. Improvement of fitness, body composition, and insulin sensitivity in overweight children in a school-based exercise program: a randomized, controlled study. [see comment]. Arch Pediatr Adolesc Med. 2005;159(10):963–8.

    Article  PubMed  Google Scholar 

  142. Racette SB, Evans EM, Weiss EP, Hagberg JM, Holloszy JO. Abdominal adiposity is a stronger predictor of insulin resistance than fitness among 50–95 year olds. Diabetes Care. 2006;29(3):673–8.

    Article  PubMed  Google Scholar 

  143. Dengel DR, Kelly AS, Olson TP, Kaiser DR, Dengel JL, Bank AJ. Effects of weight loss on insulin sensitivity and arterial stiffness in overweight adults. Metabolism. 2006;55(7):907–11.

    Article  CAS  PubMed  Google Scholar 

  144. Weiss EP, Racette SB, Villareal DT, Fontana L, Steger-May K, Schechtman KB, et al. Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake: a randomized controlled trial. Am J Clin Nutr. 2006;84(5):1033–42.

    Article  CAS  PubMed  Google Scholar 

  145. Carey DG, Pliego GJ, Raymond RL, Skau KB. Body composition and metabolic changes following bariatric surgery: effects on fat mass, lean mass and basal metabolic rate. Obes Surg. 2006;16(4):469–77.

    Article  PubMed  Google Scholar 

  146. Inge TH, Courcoulas AP, Jenkins TM, Michalsky MP, Helmrath MA, Brandt ML, et al. Weight loss and health status 3 years after bariatric surgery in adolescents. N Engl J Med. 2016;374(2):113–23.

    Article  CAS  PubMed  Google Scholar 

  147. Rao RS, Yanagisawa R, Kini S. Insulin resistance and bariatric surgery. Obes Rev. 2012;13(4):316–28.

    Article  CAS  PubMed  Google Scholar 

  148. Sun Y, You W, Almeida F, Estabrooks P, Davy B. The effectiveness and cost of lifestyle interventions including nutrition education for diabetes prevention: a systematic review and meta-analysis. J Acad Nutr Diet. [Meta-Analysis Research Support, N.I.H., Extramural Review]. 2017;117(3):404–21.e36.

    Google Scholar 

  149. Brage S, Wedderkopp N, Ekelund U, Franks PW, Wareham NJ, Andersen LB, et al. Features of the metabolic syndrome are associated with objectively measured physical activity and fitness in Danish children: the European Youth Heart Study (EYHS). Diabetes Care. 2004;27(9):2141–8.

    Article  PubMed  Google Scholar 

  150. Lee S, Bacha F, Gungor N, Arslanian SA. Cardiorespiratory fitness in youth: relationship to insulin sensitivity and beta-cell function. Obesity. 2006;14(9):1579–85.

    Article  CAS  PubMed  Google Scholar 

  151. Balagopal P, George D, Patton N, Yarandi H, Roberts WL, Bayne E, et al. Lifestyle-only intervention attenuates the inflammatory state associated with obesity: a randomized controlled study in adolescents. [see comment]. J Pediatr. 2005;146(3):342–8.

    Article  PubMed  Google Scholar 

  152. Lee S, Deldin AR, White D, Kim Y, Libman I, Rivera-Vega M, et al. Aerobic exercise but not resistance exercise reduces intrahepatic lipid content and visceral fat and improves insulin sensitivity in obese adolescent girls: a randomized controlled trial. Am J Physiol Endocrinol Metab. 2013;305(10):E1222–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Visuthranukul C, Sirimongkol P, Prachansuwan A, Pruksananonda C, Chomtho S. Low-glycemic index diet may improve insulin sensitivity in obese children. Pediatr Res. [Randomized Controlled Trial Research Support, Non-U.S. Gov’t]. 2015;78(5):567–73.

    CAS  Google Scholar 

  154. Okubo H, Crozier SR, Harvey NC, Godfrey KM, Inskip HM, Cooper C, et al. Diet quality across early childhood and adiposity at 6 years: the Southampton Women’s Survey. Int J Obes (Lond). 2015;39(10):1456–62.

    Article  CAS  Google Scholar 

  155. Altman M, Cahill Holland J, Lundeen D, Kolko RP, Stein RI, Saelens BE, et al. Reduction in food away from home is associated with improved child relative weight and body composition outcomes and this relation is mediated by changes in diet quality. J Acad Nutr Diet. [Multicenter Study Randomized Controlled Trial Research Support, N.I.H., Extramural]. 2015;115(9):1400–7.

    Google Scholar 

  156. Chen AK, Roberts CK, Barnard RJ. Effect of a short-term diet and exercise intervention on metabolic syndrome in overweight children. Metabolism. 2006;55(7):871–8.

    Article  CAS  PubMed  Google Scholar 

  157. Shaibi GQ, Cruz ML, Ball GD, Weigensberg MJ, Salem GJ, Crespo NC, et al. Effects of resistance training on insulin sensitivity in overweight Latino adolescent males. Med Sci Sports Exerc. 2006;38(7):1208–15.

    Article  CAS  PubMed  Google Scholar 

  158. Nassis GP, Papantakou K, Skenderi K, Triandafillopoulou M, Kavouras SA, Yannakoulia M, et al. Aerobic exercise training improves insulin sensitivity without changes in body weight, body fat, adiponectin, and inflammatory markers in overweight and obese girls. Metabolism. 2005;54(11):1472–9.

    Article  CAS  PubMed  Google Scholar 

  159. Gerson LS, Braun B. Effect of high cardiorespiratory fitness and high body fat on insulin resistance. Med Sci Sports Exerc. 2006;38(10):1709–15.

    Article  CAS  PubMed  Google Scholar 

  160. Casanueva FF, Dieguez C. 7 Interaction between body composition, leptin and growth hormone status. Baillieres Clin Endocrinol Metab. 1998;12(2):297–314.

    Article  CAS  PubMed  Google Scholar 

  161. Schorr M, Lawson EA, Dichtel LE, Klibanski A, Miller KK. Cortisol measures across the weight spectrum. J Clin Endocrinol Metab. 2015;100(9):3313–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Misra M, Bredella MA, Tsai P, Mendes N, Miller KK, Klibanski A. Lower growth hormone and higher cortisol are associated with greater visceral adiposity, intramyocellular lipids, and insulin resistance in overweight girls. Am J Physiol Endocrinol Metab. 2008;295(2):E385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janine Higgins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davis, S.M., Sherk, V.D., Higgins, J. (2020). Adiposity Is the Enemy: Body Composition and Insulin Sensitivity. In: Zeitler, P., Nadeau, K. (eds) Insulin Resistance. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-030-25057-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25057-7_9

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-25055-3

  • Online ISBN: 978-3-030-25057-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics