Abstract
We consider extension variants of some edge optimization problems in graphs containing the classical Edge Cover, Matching, and Edge Dominating Set problems. Given a graph \(G=(V,E)\) and an edge set \(U \subseteq E\), it is asked whether there exists an inclusion-wise minimal (resp., maximal) feasible solution \(E'\) which satisfies a given property, for instance, being an edge dominating set (resp., a matching) and containing the forced edge set U (resp., avoiding any edges from the forbidden edge set \(E\setminus U\)). We present hardness results for these problems, for restricted instances such as bipartite or planar graphs. We counter-balance these negative results with parameterized complexity results. We also consider the price of extension, a natural optimization problem variant of extension problems, leading to some approximation results.
Keywords
- Extension problems
- Edge cover
- Matching
- Edge domination
- \({\mathsf {NP}}\)-completeness
- Parameterized complexity
- Approximation
This is a preview of subscription content, access via your institution.
Buying options




Notes
- 1.
Addressing the problem to decide whether there is a truth assignment setting exactly one literal in each clause to true.
References
Bazgan, C., Brankovic, L., Casel, K., Fernau, H.: On the complexity landscape of the domination chain. In: Govindarajan, S., Maheshwari, A. (eds.) CALDAM 2016. LNCS, vol. 9602, pp. 61–72. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29221-2_6
Bazgan, C., et al.: The many facets of upper domination. Theor. Comput. Sci. 717, 2–25 (2018)
Berger, A., Fukunaga, T., Nagamochi, H., Parekh, O.: Approximability of the capacitated b-edge dominating set problem. Theor. Comput. Sci. 385(1–3), 202–213 (2007)
Berger, A., Parekh, O.: Linear time algorithms for generalized edge dominating set problems. Algorithmica 50(2), 244–254 (2008)
Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness of short symmetric instances of MAX-3SAT. ECCC (049) (2003)
Bertossi, A.A.: Dominating sets for split and bipartite graphs. Inf. Process. Lett. 19(1), 37–40 (1984)
Biró, M., Hujter, M., Tuza, Z.: Precoloring extension. I. Interval graphs. Disc. Math. 100(1–3), 267–279 (1992)
Bonamy, M., Defrain, O., Heinrich, M., Raymond, J.-F.: Enumerating minimal dominating sets in triangle-free graphs. In: Niedermeier, R., Paul, C. (eds.) STACS, Dagstuhl, Germany. Leibniz International Proceedings in Informatics (LIPIcs), vol. 126, pp. 16:1–16:12. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)
Boros, E., Gurvich, V., Hammer, P.L.: Dual subimplicants of positive Boolean functions. Optim. Meth. Softw. 10(2), 147–156 (1998)
Cardinal, J., Levy, E.: Connected vertex covers in dense graphs. Theor. Comput. Sci. 411(26–28), 2581–2590 (2010)
Casel, K., Fernau, H., Khosravian Ghadikoei, M., Monnot, J., Sikora, F.: On the complexity of solution extension of optimization problems. CoRR, abs/1810.04553 (2018)
Casel, K., Fernau, H., Ghadikoalei, M.K., Monnot, J., Sikora, F.: Extension of vertex cover and independent set in some classes of graphs. In: Heggernes, P. (ed.) CIAC 2019. LNCS, vol. 11485, pp. 124–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17402-6_11
Colbourn, C.J.: The complexity of completing partial Latin squares. Disc. Appl. Math. 8(1), 25–30 (1984)
Dudycz, S., Lewandowski, M., Marcinkowski, J.: Tight approximation ratio for minimum maximal matching. In: Lodi, A., Nagarajan, V. (eds.) IPCO 2019. LNCS, vol. 11480, pp. 181–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17953-3_14
Escoffier, B., Monnot, J., Paschos, V.T., Xiao, M.: New results on polynomial inapproximabilityand fixed parameter approximability of edge dominating set. Theory Comput. Syst. 56(2), 330–346 (2015)
Fernau, H.: edge dominating set: efficient enumeration-based exact algorithms. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 142–153. Springer, Heidelberg (2006). https://doi.org/10.1007/11847250_13
Fernau, H., Hoffmann, S.: Extensions to minimal synchronizing words. J. Autom. Lang. Comb. 24 (2019)
Fernau, H., Manlove, D.F., Monnot, J.: Algorithmic study of upper edge dominating set (2019, manuscript)
Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems. In: Johnson, D.S., et al. (eds.) STOC, pp. 448–456. ACM (1983)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co. (1979)
Golovach, P.A., Heggernes, P., Kratsch, D., Vilnger, Y.: An incremental polynomial time algorithm to enumerate all minimal edge dominating sets. Algorithmica 72(3), 836–859 (2015)
Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: On the neighbourhood helly of some graph classes and applications to the enumeration of minimal dominating sets. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 289–298. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35261-4_32
Kratochvíl, J.: A special planar satisfiability problem and a consequence of its NP-completeness. Discrete Appl. Math. 52, 233–252 (1994)
Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Generating all maximal independent sets: NP-hardness and polynomial-time algorithms. SIAM J. Comput. 9, 558–565 (1980)
McRae, A.A.: Generalizing NP-completeness proofs for bipartite and chordal graphs. Ph.D. thesis, Clemson University, Department of Computer Science, South Carolina (1994)
van Rooij, J.M.M., Bodlaender, H.L.: Exact algorithms for edge domination. Algorithmica 64(4), 535–563 (2012)
Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg (2003)
Trevisan, L.: Non-approximability results for optimization problems on bounded degree instances. In: Vitter, J.S., Spirakis, P.G., Yannakakis, M. (eds.) STOC, pp. 453–461. ACM (2001)
Uno, T.: Algorithms for enumerating all perfect, maximum and maximal matchings in bipartite graphs. In: Leong, H.W., Imai, H., Jain, S. (eds.) ISAAC 1997. LNCS, vol. 1350, pp. 92–101. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63890-3_11
Wang, J., Chen, B., Feng, Q., Chen, J.: An efficient fixed-parameter enumeration algorithm for weighted edge dominating set. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 237–250. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8_25
Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38(3), 364–372 (1980)
Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput. 3(1), 103–128 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Casel, K., Fernau, H., Khosravian Ghadikolaei, M., Monnot, J., Sikora, F. (2019). Extension of Some Edge Graph Problems: Standard and Parameterized Complexity. In: Gąsieniec, L., Jansson, J., Levcopoulos, C. (eds) Fundamentals of Computation Theory. FCT 2019. Lecture Notes in Computer Science(), vol 11651. Springer, Cham. https://doi.org/10.1007/978-3-030-25027-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-25027-0_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-25026-3
Online ISBN: 978-3-030-25027-0
eBook Packages: Computer ScienceComputer Science (R0)