Skip to main content

An Introduction to the Holocene and Anthropic Disturbance

  • Chapter
  • First Online:
Paleoclimatology

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

  • 1697 Accesses

Abstract

The Holocene started about 10,000 years ago at the end of the last glaciation. The last thousand years of this period is marked by the growing impact of human activity (changes in land use and atmospheric composition). At first sight, the numerous data show us variations that are less spectacular than the great upheavals engendered by deglaciation. Nevertheless, the general natural trend, driven by changes in solar radiation at the top of the atmosphere, is characterized by radical changes in the monsoon and the El Niño phenomenon in the tropics. In the mid-latitudes of the northern hemisphere, the changes are seen in the characteristics of the main modes of variability. Several abrupt events also punctuate the unfolding of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The current generated by the surface wind is rotated to the right of the wind in the northern hemisphere under the effect of the Coriolis force and reduces with depth under the effect of friction in the form of a spiral (Ekman’s spiral). The transport generated (Ekman transport) over the entire Ekman layer (about 100 m) is perpendicular to the wind.

References

  • Adams, J., et al. (2003). Proxy Evidence for an El Niño-like Response to Volcanic Forcing. Nature, 426(6964), 274–278.

    Article  Google Scholar 

  • Bjerknes, J. (1969). Atmospheric teleconnections from equatorial pacific. Monthly Weather Review, 97(3), 163–172.

    Article  Google Scholar 

  • Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi, A., et al. (2012). Evaluation of climate models using palaeoclimatic data. Nature Climate Change, 2, 417–424. https://doi.org/10.1038/nclimate1456.

    Article  Google Scholar 

  • Braconnot, P., Joussaume, S., Marti, O., & de Noblet, N. (1999). Synergistic feedbacks from ocean and vegetation on the African monsoon response to mid-Holocene insolation. Geophysical Reseach Letters, 26, 2481–2484.

    Article  Google Scholar 

  • Braconnot, P., et al. (2007a). Results of PMIP2 coupled simulations of the mid-holocene and last glacial maximum—Part 1: Experiments and large-scale features. Climate of the Past, 3(2), 261–277.

    Article  Google Scholar 

  • Braconnot, P., et al. (2007b). Results of PMIP2 coupled simulations of the mid-holocene and last glacial maximum—Part 2: Feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Climate of the Past, 3(2), 279–296.

    Article  Google Scholar 

  • Bradley, R. S. (1999). Paleoclimatology: Reconstructing climates of the quaternary, 2nd edn. San Diego: Harcourt/Academic, 613p.

    Google Scholar 

  • Brazdil, R., et al. (2005). Historical climatology in Europe—The state of the art. Climatic Change, 70(3), 363–430.

    Google Scholar 

  • Cane, M., et al. (2006). Progress in paleoclimate modeling. Journal of Climate, 19(20), 5031–5057.

    Google Scholar 

  • Carre, M., Sachs, J. P., Purca, S., Schauer, A. J., Braconnot, P., Falcon, R. A., et al. (2014). Holocene history of ENSO variance and asymmetry in the eastern tropical Pacific. Science, 345, 1045–1048.

    Article  CAS  Google Scholar 

  • Claussen, M., et al. (1999). Simulation of an Abrupt change in saharan vegetation in the mid-holocene. Geophysical Research Letters, 26(14), 2037–2040.

    Google Scholar 

  • Claussen, M., & Gayler, V. (1997). The greening of the sahara during the mid-holocene: Results of an interactive atmosphere-biome model. Global Ecology and Biogeography Letters, 6, 369–377.

    Article  Google Scholar 

  • Clement, A. C., et al. (2000). Suppression of El Nino during the mid-holocene by changes in the earth’s orbit. Paleoceanography, 15(6), 731–737.

    Article  Google Scholar 

  • Cobb, K. M., Westphal, N., Sayani, H. R., Watson, J. T., Di Lorenzo, E., Cheng, H., et al. (2013). Highly variable El Nino-southern oscillation throughout the holocene. Science, 339, 67–70.

    Article  CAS  Google Scholar 

  • Coles, S. (2001). An introduction to statistical modeling of extreme values (p. 208). London, New York: Springer.

    Book  Google Scholar 

  • Crucifix, M., et al. (2002). Climate evolution during the holocene: A study with an earth system model of intermediate complexity. Climate Dynamics, 19(1), 43–60.

    Article  Google Scholar 

  • de Noblet, N., et al. (1996). Possible role of atmosphere-biosphere interactions in triggering the last glaciation. Nature, 23(22), 3191–3194.

    Google Scholar 

  • deMenocal, P., et al. (2000). Coherent high- and low-latitude climate variability during the holocene warm period, Science, 288(5474), 2198–2202.

    Google Scholar 

  • Emile-Geay, J., Cobb, K. M., Carre, M., Braconnot, P., Leloup, J., Zhou, Y., Harrison, S. P., Correge, T., McGregor, H. V., Collins, M., Driscoll, R., Elliot, M., Schneider, B., & Tudhope, A. (2016). Links between tropical Pacific seasonal, interannual and orbital variability during the Holocene. Nature Geoscience, 9, 168-+.

    Google Scholar 

  • Garnier, E. (2009). Les Dérangements du temps: 500 ans de chaud et de froid en Europe. Paris: Plon.

    Google Scholar 

  • Gasse, F. (2000). Hydrological changes in the African tropics since the last glacial maximum. Quaternary Science Reviews, 19(1–5), 189–211.

    Article  Google Scholar 

  • IPCC. (2007). Climate change 2007: The physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor & H.L. Miller (Eds.), Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 996pp.

    Google Scholar 

  • IPCC. (2013). Climate change 2013: The physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 1535pp.

    Google Scholar 

  • Jansen, E., et al. (2007). Palaeoclimate, dans Solomon, In S. et al., (Ed.), Climate change 2007: The physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge: Cambridge University Press.

    Google Scholar 

  • Jézéquel, A., Dépoues, V., Guillemot, H., Trolliet, M., Vanderlinden, J.-P., & Yiou, P. (2018). Behind the veil of extreme event attribution, Climatic Change. https://doi-org.insu.bib.cnrs.fr/10.1007/s10584-018-2252-9.

  • Jolly, D., et al. (1998). Biome reconstruction from pollen and plant macrofossil data for Africa and the Arabian Peninsula at 0 and 6000 Years. Journal of Biogeography, 25(6), 1007–1027.

    Google Scholar 

  • Jones, P., & Mann, M. (2004). Climate over past millennia, Reviews of Geophysics, 42(2).

    Google Scholar 

  • Joussaume, S. & Taylor, K. E. (1995). Status of the paleoclimate modeling intercomparison project, dans. In Proceedings of the first international AMIP scientific conference, WCRP-92, Monterey, USA, pp. 425–430.

    Google Scholar 

  • Joussaume, S., et al. (1999). Monsoon changes for 6000 years ago: Results of 18 simulations from the paleoclimate modeling intercomparison project (PMIP). Geophysical Reseach Letters, 26(7), 859–862.

    Article  Google Scholar 

  • Kageyama, M., et al. (1999). Weather regimes in past climate atmospheric general circulation model simulations. Climate Dynamics, 15(10), 773–793.

    Article  Google Scholar 

  • Krinner, G., et al. (2005). A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochemical Cycles, 19(1).

    Google Scholar 

  • Kropelin, S., & Kuper, R. (2006). Climate-controlled holocene occupation in the Sahara: Motor of Africa’s evolution. Science, 313(5788), 803–807.

    Article  Google Scholar 

  • Kutzbach, J. E. (1988). Climatic changes of the last 18,000 years—observations and model simulations, Science, 241(4869), 1043–1052.

    Google Scholar 

  • Le Roy Ladurie, E. (1967). Histoire du climat depuis l’an mil (p. 381). Paris: Flammarion.

    Google Scholar 

  • Liu, Z., et al. (2007). Simulating the Transient Evolution and Abrupt Change of Northern Africa Atmosphere-Ocean-Terrestrial Ecosystem in the Holocene, Quaternary Science Reviews, 26(13–14), 1818–1837.

    Google Scholar 

  • Luan, Y., Braconnot, P., Yu, Y., Zheng, W., & Marti, O. (2012). Early and mid-Holocene climate in the tropical Pacific: Seasonal cycle and interannual variability induced by insolation changes. Climate of the Past, 8, 1093–1108.

    Article  Google Scholar 

  • Mann, M., Bradley, R., & Hughes, M. (1998). Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392, 779–787.

    Article  CAS  Google Scholar 

  • Mann, M., et al. (2005). Volcanic and solar forcing of the tropical pacific over the past 1000 years. Journal of Climate, 18(3), 447–456.

    Article  Google Scholar 

  • Massey, N., Jones, R., Otto, F. E. L., Aina, T., Wilson, S., Murphy, J. M., et al. (2015). Weather@home—development and validation of a very large ensemble modelling system for probabilistic event attribution. Quarterly Journal of the Royal Meteorological Society, 141(690), 1528–1545. https://doi.org/10.1002/qj.2455.

    Article  Google Scholar 

  • National Academies of Sciences Engineering and Medicine. (2016). éd. Attribution of extreme weather events in the context of climate change. Washington, DC: The National Academies Press. https://doi.org/10.17226/21852.

  • Philander, S. G. H. (Ed.). (1990). El Niño, La Niña, and the Southern Oscillation (p. 312). San Diego: Academic Press.

    Google Scholar 

  • Prentice, I. C., & Webb, T. (1998). BIOME 6000: Reconstructing Global Mid-Holocene Vegetation Patterns from Palaeoecological Records, Journal of Biogeography, 25(6), 997–1005.

    Google Scholar 

  • Renssen, H., et al. (2005). Simulating the holocene climate evolution at northern high latitudes using a coupled atmosphere-sea ice-ocean-vegetation model. Climate Dynamics, 24(1), 23–43.

    Article  Google Scholar 

  • Robock, A. (2000). Volcanic eruptions and climate. Reviews of Geophysics, 38(2), 191–219.

    Article  CAS  Google Scholar 

  • Ruddiman, W. (2007). The early anthropogenic hypothesis: challenges and responses, Reviews Of Geophysics, 45(3).

    Google Scholar 

  • Shindell, D., et al. (2001). Solar forcing of regional climate change during the maunder minimum, Science, 294(5549), 2149–2152.

    Google Scholar 

  • Solomon, S., et al. (Eds.). (2007). Climate change 2007: The physical science basis: Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (p. 996). Cambridge, New York: Cambridge University Press.

    Google Scholar 

  • Stott, P. A., Christidis, N., Otto, F. E. Sun, Y., Vanderlinden, J.-P., van Oldenborgh, G. J., et al. (2016). Attribution of extreme weather and climate-related events, Wiley Interdisciplinary Reviews, Climate Change, 7(1), 23–41, https://doi.org/10.1002/wcc.380.

  • Taylor, K. E., et al. (2007). Estimating shortwave radiative forcing and response in climate models. Journal of Climate, 20(11), 2530–2543.

    Google Scholar 

  • Texier, D., et al. (2000). Sensitivity of the African and Asian monsoons to mid-holocene insolation and data-inferred surface changes. Journal of Climate, 13(1), 164–181.

    Article  Google Scholar 

  • von Storch, H., & Zwiers, F. W. (2001). Statistical Analysis in Climate Research. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wohlfahrt, J., et al. (2004). Synergistic feedbacks between ocean and vegetation on mid- and high-latitude climates during the mid-holocene. Climate Dynamics, 22(2–3), 223–238.

    Article  Google Scholar 

  • Zhao, Y., et al. (2005). A multi-model analysis of the role of the ocean on the African and Indian monsoon during the mid-holocene. Climate Dynamics, 25(7–8), 777–800.

    Article  Google Scholar 

  • Zhao, Y., et al. (2007). Simulated changes in the relationship between tropical ocean temperatures and the western african monsoon during the mid-holocene. Climate Dynamics, 28(5), 533–551.

    Article  Google Scholar 

  • Zheng, W., et al. (2008). ENSO at 6 Ka and 21 Ka from ocean-atmosphere coupled model simulations. Climate Dynamics, 30(7–8), 745–762.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascale Braconnot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Braconnot, P., Yiou, P. (2021). An Introduction to the Holocene and Anthropic Disturbance. In: Ramstein, G., Landais, A., Bouttes, N., Sepulchre, P., Govin, A. (eds) Paleoclimatology. Frontiers in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-24982-3_30

Download citation

Publish with us

Policies and ethics