Skip to main content

The Phanerozoic Climate

  • Chapter
  • First Online:
Paleoclimatology

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

The Phanerozoic period covers the last 542 million years of Earth’s history, about 12% of the history of our planet. With regard to the evolution of life, the Phanerozoic experienced major events such as the rapid diversification of multicellular organisms which first appeared in the Cambrian (541–485 Ma), the colonization of continental surfaces by living organisms during the Ordovician (485–444 Ma) and the appearance of the first hominids about 8 million years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlberg, A., Arndorff, L., & Guy-Ohlson, D. (2002). Onshore climate change during the Late Triassic marine inundation of the Central European Basin. Terra Nova, 14(4), 241–248.

    Google Scholar 

  • Anderson, H. M., Hiller, N., & Gess, R. W. (1995). Archeopteris (progymnospermopsida) from the Devonian of Southern Africa. Journal of the Linnean Society, 117(4), 305–320.

    Google Scholar 

  • Bergmann, K. D. et al. (2018). A 600-million-year carbonate clumped-isotope record from the Sultanate of Oman. Journal of Sedimentary Research, 88, 960–979

    Google Scholar 

  • Berner, R. A. (2004). The phanerozoic carbon cycle (p. 150p). New York: Oxford University Press.

    Google Scholar 

  • Bice, K. L., & Norris, R. D. (2002). Possible atmospheric CO2 extremes of the Middle Cretaceous (late Albian-Turonian). Paleoceanography, 17, 1070.

    Google Scholar 

  • Boucot, A. J., Xu, C., & Scotese, C. R. (2004). Phanerozoic climatic zones and paleogeography with a consideration of atmospheric CO2 level. Paleontological Journal, 38, 115–122.

    Google Scholar 

  • Breecker, D. O., Sharp, Z. D., & McFadden, L. D. (2010). Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted for AD 2100. Proceedings of the National Academy of Science, 107, 576–580.

    Article  CAS  Google Scholar 

  • Came, R. E., et al. (2007). Coupling of surface temperatures and atmospheric CO2 concentrations during the paleozoic era. Nature, 449, 198–201.

    Article  CAS  Google Scholar 

  • Caputo M. V. et al. (2008). Late devonian and early carboniferous glacial records of South America. In Resolving the late Paleozoic ice age in time and space (Vol. 441). Geological Society of America Special Papers, (pp. 161–173).

    Google Scholar 

  • Dabard M. P. et al. (2015). Sea-level curve for the Middle to early Late Ordovician in the Armorican Massif (western France): icehouse third-order glacio-eustatic cycles.Palaeogeography Palaeoclimatology Palaeoecology, 436, 96–111.

    Google Scholar 

  • Davies N. S., & Gibling, M. R. (2013). The sedimentary record of Carboniferous rivers: continuing influence of land plant evolution on alluvial processes and Palaeozoic ecosystems. Earth-Science Reviews, 120, 40–79.

    Google Scholar 

  • DeConto, R. M., & Pollard, D. (2003). Rapid cenozoic glaciation of antarctica induced by declining atmospheric CO2. Nature, 412, 245–248.

    Article  Google Scholar 

  • Dera, G. et al. (2011). Climatic ups and downs in a disturbed Jurassic world. Geology, 39(3), 215–218.

    Google Scholar 

  • Dessert, C., et al. (2001). Erosion of deccan traps determined by river geochemistry: Impact on the global climate and the 87Sr/86Sr ratio of seawater. Earth and Planetary Science Letters, 188(3/4), 459–474.

    Article  CAS  Google Scholar 

  • Dickens, G. R. (2003). Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth and Planetary Science Letters, 213(3–4), 169–183.

    Google Scholar 

  • Donnadieu, Y., et al. (2011). A mechanism for brief glacial episodes in the mesozoic greenhouse. Paleoceanography, 26. https://doi.org/10.1029/2010pa002100.

  • Donnadieu, Y., et al. (2006). A GEOCLIM simulation of climatic and biogeochemical consequences of Pangea breakup. Geochemistry Geophysics Geosystems, 7(11). https://doi.org/10.1029/2006gc001278.

  • Dromart, G., et al. (2003). Ice age at the middle-late jurassic transition? Earth and Planetary Science Letters, 213, 205–220.

    Article  CAS  Google Scholar 

  • Elsworth, G. et al. (2017). Enhanced weathering and CO2 drawdown caused by the latest Eocene strengthening of the Atlantic meridional overturning circulation. Nature Geoscience, 10(3), 213–216.

    Google Scholar 

  • Finnegan, S., et al. (2011). The magnitude and duration of late ordovician-early silurian glaciation. Science, 331, 903–906.

    Article  CAS  Google Scholar 

  • Foster, G. L., Royer, D. L., Lunt, D. J. (2017) Future climate forcing potentially without precedent in the last 420 million years. Nature Communications. https://doi.org/10.1038/ncomms14845.

  • Frakes, L. A., Francis, J. E., & Syktus, J. I. (1992). Climate modes of the phanerozoic. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • France-Lanord, C., & Derry, L. A. (1997). Organic carbon burial forcing of the carbon cycle from Himalaya erosion. Nature, 390, 65–67.

    Article  CAS  Google Scholar 

  • Friedrich, O. et al. (2012). Evolution of middle to Late Cretaceous oceans - a 55 m.y. record of Earth’s temperature and carbon cycle. Geology, 40(2), 107–110.

    Google Scholar 

  • Galy, V., et al. (2007). Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature, 450, 407–410.

    Article  CAS  Google Scholar 

  • Ghosh, P., Garzione, C. N., & Eiler, J. M. (2006). Rapid uplift of the Altiplano revealed through C-13-O-18 bonds in paleosol carbonates. Science, 311(5760), 511–515.

    Google Scholar 

  • Goddéris, Y., et al. (2008). Causal of casual link between the rise of nannoplankton calcification and a tectonically-driven massive decrease in the Late Triassic Atmospheric CO2? Earth and Planetary Science Letters, 267, 247–255.

    Article  Google Scholar 

  • Goddéris, Y., & François, L. M. (1996). Balancing the cenozoic Carbon and Alkalinity Cycles: Constraints from isotopic records. Geophysical research letters, 23(25), 3743–3746.

    Google Scholar 

  • Goddéris, Y. et al. (2014). The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate. Earth-Science Reviews, 128, 122–138.

    Google Scholar 

  • Goddéris, Y. et al. (2017). Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering. Nature Geoscience, 10(5), 382–385.

    Google Scholar 

  • Hayes, J. M., Strauss, H., & Kaufman, A. J. (1999). The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chemical Geology, 161, 103–125.

    Article  CAS  Google Scholar 

  • Hodel, F. et al. (2018). Fossil black smoker yields oxygen isotopic composition of Neoproterozoic seawater. Nature Communications, 9, Article Number: 1453.

    Google Scholar 

  • Huber, M., & Nof, D. (2006). The ocean circulation in the Southern Hemisphere and its climatic impacts in the eocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 231, 9–28.

    Article  Google Scholar 

  • Joachimski, M. M. et al. (2004). Oxygen isotope evolution of biogenic calcite and apatite during the Middle and Late Devonian. International Journal of Earth Sciences, 93(4): 542–553.

    Google Scholar 

  • Katz, M. E. et al. (2005). Biological overprint of the geological carbon cycle. Marine Geology, 217, 323–338.

    Google Scholar 

  • Kump, L. R., et al. (1999). A weathering hypothesis for glaciation at high atmospheric pCO2 during the late ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology, 152, 173–187.

    Article  Google Scholar 

  • Le Hir, et al. (2011). The climate change caused by the land plant invasion in the Devonian. Earth and Planetary Science Letters, 310(3–4), 203–212.

    Google Scholar 

  • Lefebvre, V. et al. (2013). Was the Antarctic glaciation delayed by a high degassing rate during the Early Cenozoic? Earth and Planetary Science Letters, 371–372, 203–211.

    Google Scholar 

  • Lenton, T. M. et al. (2012). First plants cooled the Ordovician. Nature Geoscience, 5, 86–89.

    Google Scholar 

  • Loi, A. et al. (2010). The Late Ordovician glacio-eustatic record from a high-latitude storm-dominated shelf succession: The Bou Ingarf section (Anti-Atlas, Southern Morocco). Palaeogeography Palaeoclimatology Palaeoecology, 296(3–4), 332–358.

    Google Scholar 

  • McElwain, J. C., Wade-Murphy, J., Hesselbo, S. P. (2005). Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals. Nature, 435(7041), 479–482.

    Google Scholar 

  • McInerney, F. A., & Wing, S. L. (2011). The paleocene-eocene thermal maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annual Review of Earth and Planetary Sciences, 39, 489–516.

    Article  CAS  Google Scholar 

  • Mountanez, I. P., & Poulsen, C. J. (2013). The late paleozoic ice age: An evolving paradigm. Annual Review of Earth and Planetary Sciences, 41, 629–656.

    Google Scholar 

  • Nardin, E., et al. (2011). Modeling the early paleozoic long-term climatic trend. Geological Society of America Bulletin, 123, 1181–1192.

    Google Scholar 

  • Nelsen, M. P. et al. (2016). Delayed fungal evolution did not cause the Paleozoic peak in coal production. Proceedings of the National Academy of Science, 113(9), 2442–2447.

    Google Scholar 

  • Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B., & Bohaty, S. (2005). Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science, 309, 600–603.

    Article  CAS  Google Scholar 

  • Page, A. A. et al. (2007). Were transgressive black shales a negative feedback modulating glacioeustasy in the Early Palaeozoic icehouse? In Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies. pp. 123–156.

    Google Scholar 

  • Pohl, A. et al. (2016). Glacial onset predated Late Ordovician climate cooling. Paleoceanography, 31(6), 800–821

    Google Scholar 

  • Pucéat, E., et al. (2010). Revised phosphate-water fractionation equation reassessing paleotemperatures derived from biogenic apatite. Earth and Planetary Science Letters, 298, 135–142.

    Article  Google Scholar 

  • Pucéat, E. et al. (2003). Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels. Paleoceanography, 18,(2), Article Number: 1029.

    Google Scholar 

  • Rasmussen, C. M. O. et al. (2016). Onset of main Phanerozoic marine radiation sparked by emerging Mid Ordovician icehouse. Scientific Reports, 6, Article Number: 18884.

    Google Scholar 

  • Raymo, M. E. (1991). Geochemical evidence supporting T.C. chamberlin’s theory of glaciation. Geology, 19, 344–347.

    Article  CAS  Google Scholar 

  • Royer, D. L. (2006). CO2-forced climate thresholds during the phanerozoic. Geochimica and Cosmochimica Acta, 70, 5665–5675.

    Google Scholar 

  • Royer, D. L., Berner, R. A., & Beerling, D. J. (2001). Phanerozoic atmospheric CO2 change: Evaluating geochemical and paleobiological approaches. Earth-Science Reviews, 54, 349–392.

    Article  CAS  Google Scholar 

  • Rubinstein, C. V. et al. (2010). Early middle ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytologist, 188(2), 365–369.

    Google Scholar 

  • Scher, H. D., & Martin, E. E. (2006). Timing and climatic consequences of the opening of drake passage. Science, 312, 428–431.

    Article  CAS  Google Scholar 

  • Scott, A. C., & Glasspool, J. (2006). The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proceedings of the National Academy of Science, 103(29), 10861–10865.

    Google Scholar 

  • Shaviv, N. J., & Veizer, J. (2003). Celestial driver of phanerozoic climate? GSA Today, 13(7), 4–10.

    Article  Google Scholar 

  • Sluijs, H. et al. (2006). Subtropical arctic ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature, 441(7093), 610–613.

    Google Scholar 

  • Stein, W. E. et al. (2007). Giant cladoxylopsid trees resolve the enigma of the Earth’s earliest forest stumps at Gilboa. Nature, 446(7138), 904–907.

    Google Scholar 

  • Thomas, D. J. et al. (1999). New evidence for subtropical warming during the late Paleocene thermal maximum: stable isotopes from the Deep Sea Drilling Project Site 527, Walvis Ridge. Paleoceanography, 14, 561–570.

    Google Scholar 

  • Trotter, J. A. et al. (2008). Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science, 321, 550–554

    Google Scholar 

  • Veizer, J., et al. (1999). 87Sr/86Sr, δ13C and δ18O evolution of phanerozoic seawater. Chemical Geology, 161, 59–88.

    Article  CAS  Google Scholar 

  • Veizer, J., Goddéris, Y., & François, L. M. (2000). Evidence for decoupling of atmospheric CO2 and global climate during the phanerozoic eon. Nature, 408, 698–701.

    Article  CAS  Google Scholar 

  • Zachos, J. C. et al. (2003). A transient rise in tropical sea surface temperature during the Paleocene-Eocene Thermal Maximum. Science, 302(5650), 1551–1554.

    Google Scholar 

  • Zachos, J. C., Dickens, G. R., & et Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451(17). https://doi.org/10.1038/nature.

  • Zhuravlev, A. Y., & Riding, R., (2001). The ecology of the Cambrian radiation - Introduction. Perspectives in paleobiology and Earth history series, pp. 1–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Goddéris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goddéris, Y., Donnadieu, Y., Pohl, A. (2021). The Phanerozoic Climate. In: Ramstein, G., Landais, A., Bouttes, N., Sepulchre, P., Govin, A. (eds) Paleoclimatology. Frontiers in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-24982-3_27

Download citation

Publish with us

Policies and ethics