Skip to main content

The Precambrian Climate

  • Chapter
  • First Online:
Paleoclimatology

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

More than 88% of the history of the Earth occurred in the Precambrian. The Precambrian began with the formation of the Earth 4.6 billion years ago (Ga) and ended 542 million years ago (International Stratigraphic Chart, www.stratigraphy.org). It is subdivided into two large eons: the Archean (between 4 and 2.5 Ga) and the Proterozoic (from 2.5 to 0.542 Ga). The International Commission on Stratigraphy is proposing to add an extra eon, the Hadean, covering the first 600 million years of the history of our planet. Notwithstanding, this eon is described as having an informal status since no pre-Archean rock has been observed today. In fact, the oldest rocks date back to 4 billion years ago (U/Pb dating on zircon crystals). These are the Acasta gneisses in the Slave Province of Canada. The two formal eons of the Precambrian are subdivided into eras. In particular, the Proterozoic contains three eras: Paleoproterozoic (2.5–1.6 Ga), Mesoproterozoic (1.6–1.0 Ga) and Neoproterozoic (1.0–0.542 Ga).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bodiselitsch, B., Koeberl, C., Master, S., & Reimold, W. U. (2005). Estimating duration and intensity of Neoproterozoic snowball Glaciations from Ir Anomalies. Science, 308(5719), 239–242.

    Article  CAS  Google Scholar 

  • Caldeira, K., & Kasting, J. F. (1992). Susceptibility of the early earth to irreversible Glaciation caused by carbon dioxide clouds. Nature, 359, 226–228.

    Article  CAS  Google Scholar 

  • Catling, D. C., & Claire, M. W. (2005). How Earth’s atmosphere evolved to an oxic state: A status report. Earth and Planetary Science Letters, 237, 1–20.

    Article  CAS  Google Scholar 

  • Donnadieu, Y., Fluteau, F., Ramstein, G., Ritz, C., & Besse, J. (2003). Is there a conflict between the Neoproterozoic Glacial deposits and the Snowball Earth interpretation: An improved understanding with numerical modeling. Earth and Planetary Science Letters, 08, 101–112.

    Article  Google Scholar 

  • Donnadieu, Y., Goddéris, Y., Ramstein, G., Nédelec, A., & Meert, J. G. (2004). Snowball EARTH triggered by continental break-up through changes in runoff. Nature, 428, 303–306.

    Article  CAS  Google Scholar 

  • Evans, D. A. D. (2000). Stratigraphic, Geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox. American Journal of Science, 300, 347–433.

    Article  Google Scholar 

  • François, L. M., & Goddéris, Y. (1998). Isotopic constraints on the cenozoic evolution of the carbon cycle. Chemical Geology, 145, 177–212.

    Article  Google Scholar 

  • Gaucher, E. A., Govindarajan, S., & Ganesh, O. K. (2008). Paleotemperature trend for precambrian life inferred from resurrected proteins. Nature, 451, 704–708.

    Article  CAS  Google Scholar 

  • Goddéris, Y., et al. (2003). The Sturtian Glaciation: Fire and ice. Earth and Planetary Science Letters, 211, 1–12.

    Article  Google Scholar 

  • Goddéris, Y., & Veizer, J. (2000). Tectonic control of chemical and isotopic composition of ancient oceans: The impact of continental growth. American Journal of Science, 300, 434–461.

    Article  Google Scholar 

  • Goodman, J. C. (2006). Through thick and thin: Marine and meteoric ice in a ‘Snowball Earth’ climate. Geophysical Research Letters, 33. https://doi.org/10.1029/2006gl026840.

  • Halverson, G. P., Hoffman, P. F., Schrag, D. P., Maloof, A. C., & Rice, A. H. N. (2005). Towards a Neoproterozoic composite carbon isotope record. Geological Society of America Bulletin, 117, 1181–1207.

    Google Scholar 

  • Hoffman, P. F., Abbot D. S., Ashkenazy, Y., Benn, D. I., Brocks, J. J., Cohen, P. A., et al. (2017). Snowball Earth climate dynamics and Cryogenian geology geobiology. Science Advances.

    Google Scholar 

  • Hoffman, P. F., Kaufman, A. J., Halverson, G. P., & Schrag, D. P. (1998). A Neoproterozoic Snowball Earth. Science, 281, 1342–1346.

    Google Scholar 

  • Hyde, W. T., Crowley, T. J., Baum, S. K., & Peltier, W. R. (2000). Neoproterozoic ‘Snowball Earth’ simulations with a coupled climate/ice sheet model. Nature, 405, 425–429.

    Article  CAS  Google Scholar 

  • Kasting, J. F., & Howard, M. T. (2006). Atmospheric composition and climate on the early earth. Philosophical Transaction Royal Society London B, 361, 1733–1742.

    Google Scholar 

  • Kasting, J. F., et al. (2006). Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater. Earth and Planetary Science Letters, 252, 82–93.

    Article  CAS  Google Scholar 

  • Kaufman, A. J., & Xiao, S. H. (2003). High CO2 levels in the proterozoic atmosphere estimated from analyses of individual microfossils. Nature, 425, 279–282.

    Article  CAS  Google Scholar 

  • Knauth, L. P., & Epstein, S. (1976). Hydrogen and oxygen isotope ratios in nodular and bedded cherts. Geochimica Cosmochimica Acta, 40, 1095–1108.

    Google Scholar 

  • Kump, L. R., Kasting, J. F., & Barley, M. E. (2001). Rise of atmospheric oxygen and the ‘upside-down’ Archean Mantle. Geochemistry Geophysics Geosystems, 2(1). https://doi.org/10.1029/2000gc000114.

  • Le Hir, G., Goddéris, Y., Ramstein, G., & Donnadieu, Y. (2007). A scenario for the evolution of the atmospheric pCO2 during a Snowball Earth. Geology (in press).

    Google Scholar 

  • Lowe, D. R., & Tice, M. M. (2004). Geologic evidence for Archean atmospheric and climatic evolution: Fluctuating levels of CO2, CH4, and O2 with an overriding tectonic control. Geology, 32(6), 493–496.

    Article  CAS  Google Scholar 

  • McKay, C. P. (2000). Thickness of tropical ice and photosynthesis on a Snowball Earth. Geophysical Research Letters, 27, 2153–2156.

    Google Scholar 

  • Papineau, D., Mojzsis, S. J., & Schmitt, A. K. (2007). Multiple sulfur isotopes from paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth and Planetary Science Letters, 255, 188–212.

    Article  CAS  Google Scholar 

  • Pavlov, A. A., Hurtgen, M. T., Kasting, J. F., & Arthur, M. A. (2003). Methane-rich proterozoic atmosphere. Geology, 31, 87–90.

    Article  CAS  Google Scholar 

  • Pavlov, A. A., Kasting, J. F., Brown, L. L., Rages, K. A., & Freedman, R. (2000). Greenhouse warming by CH4 in the atmosphere of Early Earth. Journal of Geophysical Research, 105(E5), 11981–11990.

    Google Scholar 

  • Pierrehumbert, R. T. (2004). High levels of atmospheric carbon dioxide necessary for the termination of global Glaciation. Nature, 429, 646–649.

    Article  CAS  Google Scholar 

  • Pollard, D., & Kasting, J. F. (2005). Snowball Earth: A thin-ice solution with flowing sea glaciers. Journal of Geophysical Research, 111.

    Google Scholar 

  • Robert, F., & Chaussidon, M. (2006). A palaeotemperature curve for the precambrian oceans based on silicon isotopes in cherts. Nature, 443, 969–972.

    Article  CAS  Google Scholar 

  • Torsvik, T. H., et al. (2001). Rodinia refined or obscured: Paleomagnetism of the Malani igneous suite (NW India). Precambrian Research, 108, 319–333.

    Article  CAS  Google Scholar 

  • Walker, J. C. G., Hays, P. B., & Kasting, J. F. (1981). A negative feedback mechanism for the long-term stabilization of earth’s surface temperature. Journal of Geophysical Research, 86, 9776–9782.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Goddéris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goddéris, Y., Ramstein, G., Le Hir, G. (2021). The Precambrian Climate. In: Ramstein, G., Landais, A., Bouttes, N., Sepulchre, P., Govin, A. (eds) Paleoclimatology. Frontiers in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-24982-3_26

Download citation

Publish with us

Policies and ethics