Skip to main content

Biogeochemical Cycles and Aerosols Over the Last Million Years

  • Chapter
  • First Online:
Paleoclimatology

Abstract

The biogeochemical cycles encompass the exchange of chemical elements between reservoirs such as the atmosphere, ocean, land and lithosphere. Those exchanges involve biological, geological and chemical processes, hence the term “biogeochemical cycles”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, J. M., Faure, H., Faure-Denard, L., McGlade, J. M., & Woodward, F. I. (1990). Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature, 348, 711–714.

    Article  CAS  Google Scholar 

  • Adkins, J. F., McIntyre, K., & Schrag, D. P. (2002). The salinity, temperature, and δ18O of the glacial deep ocean. Science, 298, 1769–1773. https://doi.org/10.1126/science.1076252.

    Article  CAS  Google Scholar 

  • Adkins, J. F. (2013). The role of deep ocean circulation in setting glacial climates. Paleoceanography, 28, 539–561. https://doi.org/10.1002/palo.20046.

    Article  Google Scholar 

  • Adloff, F., Somot, S., Sevault, F., Jordà, G., Aznar, R., Déqué, M., et al. (2015). Mediterranean Sea response to climate change in an ensemble of twenty-first century scenarios. Climate Dynamics, 45(9–10), 2775–2802. https://doi.org/10.1007/s00382-015-2507-3.

    Article  Google Scholar 

  • Ahn, J., & Brook, E. J. (2008). Atmospheric CO2 and climate on millennial time scales during the last glacial period. Science, 322, 83. https://doi.org/10.1126/science.1160832.

    Article  CAS  Google Scholar 

  • Ahn, J., Brook, E. J., Schmittner, A., & Kreutz, K. (2012). Abrupt change in atmospheric CO2 during the last ice age. Geophysical Reseach Letters, 39, L18711. https://doi.org/10.1029/2012GL053018.

    Article  CAS  Google Scholar 

  • Albani, S., Mahowald, N. M., Winckler, G., Anderson, R. F., Bradtmiller, L. I., Delmonte, B., et al. (2015). Twelve thousand years of dust: The Holocene global dust cycle constrained by natural archives. Climate of the Past, 11, 869–903. https://doi.org/10.5194/cp-11-869-2015.

    Article  Google Scholar 

  • Albani, S., Balkanski, Y., Mahowald, N., Winckler, G., Maggi, V., & Delmonte, B. (2018). Aerosol-climate interactions during the Last Glacial Maximum. Current Climate Change Reports, 4, 99–114. https://doi.org/10.1007/s40641-018-0100-7.

    Article  Google Scholar 

  • Anderson, R. F., Ali, S., Bradtmiller, L. I., Nielsen, S. H. H., Fleisher, M. Q., Anderson, B. E., et al. (2009). Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science, 323, 1443. https://doi.org/10.1126/science.1167441.

    Article  CAS  Google Scholar 

  • Archer, D., & Maier-Reimer, E. (1994). Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature, 367, 260–263.

    Article  CAS  Google Scholar 

  • Archer, D., Winguth, A., Lea, D., & Mahowald, N. (2000). What caused the glacial/interglacial pCO2 cycles? Reviews of Geophysics, 38, 159–189.

    Article  CAS  Google Scholar 

  • Archer, D. E., Martin, P. A., Milovich, J., Brovkin, V., Plattner, G.-K., & Ashendel, C. (2003). Model sensitivity in the effect of Antarctic sea ice and stratification on atmospheric pCO2. Paleoceanography, 18(1), 1012.

    Article  Google Scholar 

  • Ayache, M., Dutay, J.-C., Arsouze, T., Révillon, S., Beuvier, J., & Jeandel, C. (2016), High resolution neodymium characterization along the Mediterranean margins and modeling of εNd distribution in the Mediterranean basins. Biogeosciences, (April), 1–31. http://doi.org/10.5194/bg-2016–109.

  • Barker, S., Diz, P., Vautravers, M. J., Pike, J., Knorr, G., Hall, I. R., et al. (2009). Interhemispheric Atlantic seesaw response during the last deglaciation. Nature, 457, 1097–1102. https://doi.org/10.1038/nature07770.

    Article  CAS  Google Scholar 

  • Barnola, J. M., Raynaud, D., Korotkevich, Y. S., & Lorius, C. (1987). Vostok ice core provides 160,000-year record of atmospheric CO2. Nature, 329, 408–414.

    Article  CAS  Google Scholar 

  • Basak, C., Fröllje, H., Lamy, F., Gersonde, R., Benz, V., Anderson, R. F., et al. (2018). Breakup of last glacial deep stratification in the South Pacific. Science, 359(6378), 900–904. https://doi.org/10.1126/science.aao2473.

    Article  CAS  Google Scholar 

  • Bereiter, B., Lüthi, D., Siegrist, M., Schüpbach, S., Stocker, T. F., & Fischer H. (2012). Mode change of millennial CO2 variability during the last glacial cycle associated with a bipolar marine carbon seesaw. Proceedings of the National Academy of Sciences, 109(25), 9755–9760. https://doi.org/10.1073/pnas.1204069109.

  • Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F., Fischer, H., et al. (2015). Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophysical Reseach Letters, 42, 542–549. https://doi.org/10.1002/2014GL061957.

    Article  Google Scholar 

  • Berner, R. A., Beerling, D. J., Dudley, R., Robinson, J. M., & Wildman, R. A. (2003). Phanerozoic atmospheric oxygen. Annual Review of Earth and Planetary Sciences, 31, 105–134.

    Article  CAS  Google Scholar 

  • Bigelow, N. H., Brubaker, L. B., Edwards, M. E., Harrison, S. P., Prentice, I. C., Anderson, P. M., Andreev, A. A., Bartlein, P. J., Christensen, T. R., Cramer, W., Kaplan, J. O., Lozhkin, A. V., Matveyeva, N. V., Murray, D. V., McGuire, A. D., Razzhivin, V. Y., Ritchie, J. C., Smith, B., Walker, D. A., Gajewski, K., Wolf, V., Holmqvist, B. H., Igarashi, Y., Kremenetskii, K., Paus, A., Pisaric, M. F. J., & Vokova, V. S. (2003). Climate change and Arctic ecosystems I. Vegetation changes north of 55 °N between the Last Glacial Maximum, mid-Holocene and present. Journal of Geophysical Research, 108(D19), 8170.

    Google Scholar 

  • Bird, M. I., Lloyd, J., & Farquhar, G. D. (1994). Terrestrial carbon storage at the LGM. Nature, 371, 566.

    Article  CAS  Google Scholar 

  • Blunier, T., Chappellaz, J., Schwander, J., Dällenbach, A., Stauffer, B., Stocker, T. F., et al. (1998). Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature, 394, 739–743.

    Article  CAS  Google Scholar 

  • Buizert, C., Cuffey, K. M., Severinghaus, J. P., Baggenstos, D., Fudge, T. J., Steig, E. J., et al. (2015). The WAIS Divide deep ice core WD2014 chronology—Part 1: Methane synchronization (68–31 ka BP) and the gas age–ice age difference. Climate of the Past, 11, 153–173. https://doi.org/10.5194/cp-11-153-2015.

    Article  Google Scholar 

  • Bopp, L., Kohfeld, K. E., Quéré, C. L., & Aumont, O. (2003a). Dust impact on marinebiota and atmospheric CO2 during glacial periods. Paleoceanography, 18(2), 1046.

    Article  Google Scholar 

  • Bopp, L. O., Aumont, S. Belviso, & Monfray, P. (2003b). Potential impact of climate change on marine dimethyl sulfide emissions. Tellus B: Chemical and Physical Meteorology, 55(1), 11–22. https://doi.org/10.3402/tellusb.v55i1.16359.

    Article  Google Scholar 

  • Bopp, L., et al. (2013). Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences, 10, 6225–6245. https://doi.org/10.5194/bg-10-6225-2013.

    Article  Google Scholar 

  • Bopp, L., Resplandy, L., Untersee, A., Mezo, P. L., & Kageyama, M. (2017). Ocean (de)oxygenation from the Last Glacial Maximum to the twenty-first century: insights from Earth system models. Philosophical Transactions of the Royal Society A, 375, 20160323.

    Article  CAS  Google Scholar 

  • Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., & Zhang, X. Y. (2013). Clouds and aerosols. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press.

    Google Scholar 

  • Bouttes, N., Roche, D. M., & Paillard, D. (2009). Impact of strong deep ocean stratification on the glacial carbon cycle. Paleoceanography, 24, PA3203. https://doi.org/10.1029/2008pa001707.

  • Bouttes, N., Paillard, D., & Roche, D. M. (2010). Impact of brine-induced stratification on the glacial carbon cycle. Climate of the Past, 6, 575–589. https://doi.org/10.5194/cp-6-575-2010.

    Article  Google Scholar 

  • Bouttes, N., Paillard, D., Roche, D. M., Brovkin, V., & Bopp, L. (2011). Last Glacial Maximum CO2 and δ13C successfully reconciled. Geophysical Reseach Letters, 38, L02705. https://doi.org/10.1029/2010GL044499.

    Article  CAS  Google Scholar 

  • Bouttes, N., Roche, D., & Paillard, D. (2012). Systematic study of the impact of fresh water fluxes on the glacial carbon cycle. Climate of the Past, 8, 589–607.

    Article  Google Scholar 

  • Bouttes, N., Swingedouw, D., Roche, D. M., Sanchez-Goni, M. F., & Crosta, X. (2018). Response of the carbon cycle in an intermediate complexity model to the different climate configurations of the last nine interglacials. Climate of the Past, 14, 239–253. https://doi.org/10.5194/cp-14-239-2018.

    Article  Google Scholar 

  • Bozbiyik, A., Steinacher, M., Joos, F., Stocker, T. F., & Menviel, L. (2011). Fingerprints of changes in the terrestrial carbon cycle in response to large reorganizations in ocean circulation. Climate of the Past, 7, 319–338.

    Article  Google Scholar 

  • Broecker, W. S., & Peng, T.-H. (Eds.). (1982). Tracers in the Sea. Palisades, New York: Lamont-Doherty Geological Observatory of Columbia University.

    Google Scholar 

  • Brook, E. J., Harder, S., Severinghaus, J., Steig, E. J., & Sucher, C. M. (2000). On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochemical Cycles, 14(2), 559–572. https://doi.org/10.1029/1999GB001182.

    Article  CAS  Google Scholar 

  • Brovkin, V., Ganopolski, A., Archer, D., & Munhoven, G. (2012). Glacial CO2 cycle as a succession of key physical and biogeochemical processes. Climate of the Past, 8, 251–264. https://doi.org/10.5194/cp-8-251-2012.

    Article  Google Scholar 

  • Carslaw, K. S., Boucher, O., Spracklen, D. V., Mann, G. W., Rae, J. G. L., Woodward, S., et al. (2010). A review of natural aerosol interactions and feedbacks within the Earth system. Atmospheric Chemistry and Physics, 10(4), 1701–1737.

    Article  CAS  Google Scholar 

  • Catling, D. C., & Claire, M. W. (2005). How Earth’s atmosphere evolved to an oxic state: A status report. Earth and Planetary Science Letters, 237, 1–20.

    Article  CAS  Google Scholar 

  • Chappellaz, J., Barnola, J. M., Raynaud, D., Korotkevich, Y. S., & Lorius, C. (1990). Ice-Core Record of Atmospheric Methane over the Past 160,000 Years. Nature, 345, 127–131.

    Article  CAS  Google Scholar 

  • Chappellaz, J. A., Fung, I. Y., & Thompson, A. M. (1993). The atmospheric CH4 increase since the Last Glacial Maximum. Tellus, 45B, 228–241. 1. Source Estimates.

    Article  CAS  Google Scholar 

  • Chappellaz, J., Brook, E., Blunier, T., & Malaizé, B. (1997). CH4 and δ18O of O2 records from Antarctic and Greenland ice: A clue for stratigraphic disturbance in the bottom part of the Greenland Ice Core Project and the Greenland Ice Sheet Project 2 ice cores. Journal Geophysical Research, 102, 26547–26557.

    Article  CAS  Google Scholar 

  • Charlson, R. J., Lovelock, J. E., Andreae, M. O., & Warren, S. G. (1987). Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326, 655–661.

    Article  CAS  Google Scholar 

  • Ciais, P., Tagliabue, A., Cuntz, M., Bopp, L., Scholze, M., Hoffmann, G., et al. (2012). Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum. Nature Geoscience, 5, 74–79. https://doi.org/10.1038/ngeo1324.

    Article  CAS  Google Scholar 

  • Clement, A. C., & Peterson, L. C. (2008). Mechanisms of abrupt climate change of the last glacial period. Reviews of Geophysics, 46, RG4002. https://doi.org/10.1029/2006rg000204.

  • Craig, H. (1957). Isotopic standards for carbon and oxygen and correction factors for massspectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta, 12, 133–149.

    Article  CAS  Google Scholar 

  • Crichton, K. A., Bouttes, N., Roche, D. R., Chappellaz, J., & Krinner, G. (2016). Permafrost carbon as a missing link to explain CO2 changes during the last deglaciation. Nature Geoscience, 9, 683–686. https://doi.org/10.1038/ngeo2793.

    Article  CAS  Google Scholar 

  • Crowley, T. (1995). Ice age terrestrial carbon changes revisited. Global Biogeochemical Cycles, 9(3), 377–389.

    Article  CAS  Google Scholar 

  • Crutzen, P. J., & Brühl, C. (1993). A model study of atmospheric temperatures and the concentrations of ozone, hydroxyl, and some other photochemically active gases during the glacial, the pre-industrial Holocene and the present. Geophysical Reseach Letters, 20(11), 1047–1050.

    Article  CAS  Google Scholar 

  • Curry, W. B., & Oppo, D. W. (2005). Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanography, 20, PA1017. https://doi.org/10.1029/2004pa001021.

  • Dahl-Jensen, D. (2018). Drilling for the oldest ice. Nature Geoscience, 11, 703–704.

    Article  CAS  Google Scholar 

  • Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., et al. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218–220.

    Article  Google Scholar 

  • De Boer, A. M., & Hogg, A. M. C. (2014). Control of the glacial carbon budget by topographically induced mixing. Geophysical Research Letters, 41. doi:10.1002/2014GL059963.

    Google Scholar 

  • Delmas, R., Ascencio, J. M., & Legrand, M. (1980). Polar ice evidence that atmospheric CO2 20,000 year BP was 50% of present. Nature, 284, 155–157.

    Article  CAS  Google Scholar 

  • Emeis, K.-C., Schulz, H., Struck, U., Rossignol-Strick, M., Erlenkeuser, H., Howell, M. W., Kroon, D., Mackensen, A., Ishizuka, S., Oba, T., Sakamoto, T., & Koizumi, I. (2003). Eastern Mediterranean surface water temperatures and 18 O composition during deposition of sapropels in the late Quaternary. Paleoceanography, 18(1), n/a–n/a. https://doi.org/10.1029/2000pa000617.

  • EPICA Community Members. (2004). Eight glacial cycles from an Antarctic ice core. Nature, 429, 623–628. https://doi.org/10.1038/nature02599.

    Article  CAS  Google Scholar 

  • EPICA Community Members. (2006). One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 444(7116), 195–198. https://doi.org/10.1038/nature05301.

    Article  CAS  Google Scholar 

  • Ezat, M. M., Rasmussen, T. L., Hönisch, B., Groeneveld, J., & deMenocal, P. (2017). Episodic release of CO2 from the high-latitude North Atlantic Ocean during the last 135 kyr. Nature Communications, 8, 14498.

    Article  CAS  Google Scholar 

  • Ferrari, R., Jansen, M. F., Adkins, J. F., Burke, A., Stewart, A. L., & Thompson, A. F. (2014). Antarctic sea ice control on ocean circulation in present and glacial climates. PNAS, 111(24), 8753–8758. https://doi.org/10.1073/pnas.1323922111.

    Article  CAS  Google Scholar 

  • Fischer, H., Schmitt, J., Lüthi, D., Stocker, T. F., Tschumi, T., Parekh, P., et al. (2010). The role of Southern Ocean processes on orbital and millennial CO2 variations—A synthesis. Quaternary Science Reviews, 29(1–2), 193–205. https://doi.org/10.1016/j.quascirev.2009.06.007.

    Article  Google Scholar 

  • Flückiger, J., Blunier, T., Stauffer, B., Chappellaz, J., Spahni, R., Kawamura, K., Schwander, J., Stocker, T. F., & Dahl‐Jensen D. (2004). N2O and CH4 variations during the last glacial epoch: Insight into global processes. Global Biogeochemical Cycles, 18, GB1020. https://doi.org/10.1029/2003gb002122.

  • Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O. K., Zweng, M. M., & Johnson, D. R. (2010). World Ocean Atlas 2009, Volume 3: Dissolved oxygen, apparent oxygen utilization, and oxygen saturation. In: S. Levitus (Ed.), NOAA Atlas NESDIS 70, Washington, D.C.: U.S. Government Printing Office, 344 pp.

    Google Scholar 

  • Gersonde, R., Crosta, X., Abelmann, A., & Armand, L. (2005). Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum—A circum-Antarctic view based on siliceous microfossil records. Quat. Sci. Rev., 24, 869–896.

    Article  Google Scholar 

  • Goosse, H., Roche, D. M., Mairesse, A., & Berger, M. (2013). Modeling past sea ice changes. Quaternary Science Reviews, 79, 191–206. https://doi.org/10.1016/j.quascirev.2013.03.011.

    Article  Google Scholar 

  • Gottschalk, J., Skinner, L. C., Lippold, J., Vogel, H., Frank, N., Jaccard, S. L., et al. (2016). Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes. Nature Communications, 7, 11539.

    Article  CAS  Google Scholar 

  • Grant, K. M., Rohling, E. J., Bar-Matthews, M., Ayalon, A., Medina-Elizalde, M., Bronk Ramsey, C., et al. (2012). Rapid coupling between ice volume and polar temperature over the past 150 kyr. Nature, 491, 744–747.

    Article  CAS  Google Scholar 

  • Grimm, R., Maier-Reimer, E., Mikolajewicz, U., Schmiedl, G., Müller-Navarra, K., Adloff, F., Grant, K. M., Ziegler, M., Lourens, L. J., & Emeis, K.-C. (2015). Late glacial initiation of Holocene eastern Mediterranean sapropel formation. Nature Communications, 6(7099), 12 pp. https://doi.org/10.1038/ncomms8099.

  • Hamon, N., Sepulchre, P., Lefebvre, V., & Ramstein, G. (2013). The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition (ca. 14 Ma). Climate of the Past, 9(6), 2687–2702. https://doi.org/10.5194/cp-9-2687-2013.

  • Harrison, S. P., Yu, G., Takahara, H., & Prentice, I. C. (2001). Palaeovegetation—Diversity of temperate plants in east Asia. Nature, 413, 129–130.

    Article  CAS  Google Scholar 

  • Hemleben, C., Hoernle, K., Jørgensen, B. B., & Roether, W. (2003). Ostatlantik-Mittelmeer- Schwarzes Meer, Cruise 51, 12 September–28 December 2001. Meteor Ber. 03-1, 213 pp.

    Google Scholar 

  • Hemming, S. R. (2004). Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics, 42, RG1005. https://doi.org/10.1029/2003rg000128.

  • Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quaternary Research, 29(2), 142–152. https://doi.org/10.1016/0033-5894(88)90057-9.

    Article  Google Scholar 

  • Hesse, T., Butzin, M., Bickert, T., & Lohmann, G. (2011). A model-data comparison of δ13C in the glacial Atlantic Ocean. Paleoceanography, 26, PA3220. https://doi.org/10.1029/2010pa002085.

  • Holland, H. D. (1994). Early Life on Earth. In S. Bengston (Ed.) (pp. 237–244). New York: Columbia University Press.

    Google Scholar 

  • Jaccard, S. L., & Galbraith, E. D. (2011). Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nature Geoscience, 5, 151–156.

    Article  CAS  Google Scholar 

  • Jaccard, S. L., & Galbraith, E. D. (2012). Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nature Geoscience, 5, 151–156.

    Article  CAS  Google Scholar 

  • Jaccard, S., Galbraith, E., Frölicher, T., & Gruber, N. (2014). Ocean (de)oxygenation across the last deglaciation: Insights for the future. Oceanography, 27, 26–35.

    Article  Google Scholar 

  • Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., et al. (2005). Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308, 67. https://doi.org/10.1126/science.1105959.

    Article  CAS  Google Scholar 

  • Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., et al. (2007). Orbital and Millennial Antarctic climate variability over the past 800,000 years. Science, 317(5839), 793–797.

    Article  CAS  Google Scholar 

  • Kaplan, J. O., Folberth, G., & Hauglustaine, D. A. (2006). Role of methane and biogenic volatile organic compound sources in late glacial and Holocene fluctuations of atmospheric methane concentrations. Global Biogeochemical Cycles, 20, GB2016. https://doi.org/10.1029/2005gb002590.

  • Kohfeld, K. E., & Harrison, S. P. (2001). DIRTMAP: The geological record of dust. Earth-Science Reviews, 54, 81–114. https://doi.org/10.1016/S0012-8252(01)00042-3.

    Article  CAS  Google Scholar 

  • Kohfeld, K. E., Quéré, C. L., Harrison, S. P., & Anderson, R. F. (2005). Role of marine biology in glacial-interglacial CO2 cycles. Science, 308, 74–78.

    Article  CAS  Google Scholar 

  • Kohfeld, K. E., Graham, R. M., de Boer, A. M., Sime, L. C., Wolff, E. W., Le Quéré, C., et al. (2013). Southern Hemisphere westerly wind changes during the Last Glacial Maximum: Paleo-data synthesis. Quaternary Science Reviews, 68, 76–95. https://doi.org/10.1016/j.quascirev.2013.01.017.

    Article  Google Scholar 

  • Köhler, P., Knorr, G., & Bard, E. (2014). Permafrost thawing as a possible source of abrupt carbon release at the onset of the Bølling/Allerød. Nature Communications. https://doi.org/10.1038/ncomms6520.

    Article  Google Scholar 

  • Köng, E., Zaragosi, S., Schneider, J. L., Garlan, T., Bachèlery, P., Sabine, M., et al. (2017). Gravity-driven deposits in an active margin (Ionian Sea) over the last 330,000 years. Geochemistry, Geophysics, Geosystems, 18(11), 4186–4210. https://doi.org/10.1002/2017GC006950.

    Article  Google Scholar 

  • Kullenberg, B. (1952). On the salinity of the water contained in marine sediments. Meddelanden från Oceanografiska institutet i Göteborg, 21, 1–38.

    Google Scholar 

  • Lambert, F., Tagliabue, A., Shaffer, G., Lamy, F., Winckler, G., Farias, L., et al. (2015). Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates. Geophysical Research Letters, 42, 6014–6023. https://doi.org/10.1002/2015GL064250.

    Article  CAS  Google Scholar 

  • Landais, A., Dreyfus, G., Capron, E., Jouzel, J., Masson-Delmotte, V., Roche, D. M., et al. (2013). Two-phase change in CO2, Antarctic temperature and global climate during termination II. Nature Geoscience, 6, 1062–1065. https://doi.org/10.1038/NGEO1985.

    Article  CAS  Google Scholar 

  • Legrand, M., Feniet-Saigne, C., Sattzman, E. S., Germain, C., Barkov, N. I., & Petrov, V. N. (1991). Ice-core record of oceanic emissions of dimethylsulphide during the last climate cycle. Nature, 350, 144–146.

    Article  CAS  Google Scholar 

  • Legrand, M., & Mayewski, P. (1997). Glaciochemistry of polar ice cores: A review. Reviews of Geophysics, 35(3), 219–243.

    Article  CAS  Google Scholar 

  • Levine, J. G., Wolff, E. W., Jones, A. E., Sime, L. C., Valdes, P. J., Archibald, A. T., et al. (2011). Reconciling the changes in atmospheric methane sources and sinks between the Last Glacial Maximum and the pre-industrial era. Geophys. Res. Lett., 38, L23804. https://doi.org/10.1029/2011GL049545.

    Article  CAS  Google Scholar 

  • Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., et al. (2008). Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature, 453, 383–386. https://doi.org/10.1038/nature06950.

    Article  CAS  Google Scholar 

  • Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., et al. (2008). High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453, 379–382. https://doi.org/10.1038/nature06949.

    Article  CAS  Google Scholar 

  • Lourantou, A., Lavrič, J. V., Köhler, P., Barnola, J.-M., Paillard, D., Michel, E., Raynaud, D., & Chappellaz, J. (2010). Constraint of the CO2 rise by new atmospheric carbon isotopic measurements during the last deglaciation. Global Biogeochemical Cycles, 24, GB2015. https://doi.org/10.1029/2009gb003545.

  • Mahowald, N. M., Scanza, R., Brahney, J., Goodale, C. L., Hess, P. G., Moore, J. K., et al. (2017). Aerosol deposition impacts on land and ocean carbon cycles. Current Climate Change Reports, 3(1), 16–31.

    Article  Google Scholar 

  • Marcott, S. A., Bauska, T. K., Buizert, C., Steig, E. J., Rosen, J. L., Cuffey, K. M., et al. (2014). Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature, 514, 616–619. https://doi.org/10.1038/nature13799.

    Article  CAS  Google Scholar 

  • Mariotti, V. (2013). Le cycle du carbone en climat glaciaire: état moyen et variabilité, Ph.D. thesis. 252 p.

    Google Scholar 

  • Marchal, O., & Curry, W. B. (2008). On the Abyssal circulation in the Glacial Atlantic. Journal of Physical Oceanography, 38, 2014–2037. https://doi.org/10.1175/2008JPO3895.1.

    Article  Google Scholar 

  • Martinez-Ruiz, F., Kastner, M., Paytan, A., Ortega-Huertas, M., & Bernasconi, S. (2000). Geochemical evidence for enhanced productivity during S1 sapropel deposition in the eastern Mediterranean. Paleoceanography, 15(2), 200–209. https://doi.org/10.1029/1999PA000419.

    Article  Google Scholar 

  • Marzocchi, A., & Jansen, M. F. (2017). Connecting Antarctic sea ice to deep-ocean circulation in modern and glacial climate simulations. Geophysical Research Letters, 44, 6286–6295. https://doi.org/10.1002/2017GL073936.

    Article  Google Scholar 

  • Maslin, M., Adams, J., Thomas, E., Faure, H., & Haines-Young, R. (1995). Estimating the carbon transfer between the ocean, atmosphere and the terrestrial biosphere since the Last Glacial Maximum. Terra Nova, 7(3), 358–366.

    Article  Google Scholar 

  • Matsumoto, K., & Yokoyama, Y. (2013). Atmospheric Δ14C reduction in simulations of Atlantic overturning circulation shutdown, Global Biogeochemical Cycles, 27. https://doi.org/10.1002/gbc.20035.

  • Menviel, L., Timmermann, A., Mouchet, A., & Timm, O. (2008a). Climate and marine carbon cycle response to changes in the strength of the Southern Hemispheric westerlies. Paleoceanography, 23, PA4201.

    Google Scholar 

  • Menviel, L., Timmermann, A., Mouchet, A., & Timm, O. (2008b). Meridional reorganizations of marine and terrestrial productivity during Heinrich events. Paleoceanography, 23, PA1203. https://doi.org/10.1029/2007pa001445.

  • Menviel, L., Spence, P., & England, M. H. (2015). Contribution of enhanced Antarctic bottom water formation to Antarctic warm events and millennial-scale atmospheric CO2 increase. Earth and Planetary Science Letters, 413, 37–50. https://doi.org/10.1016/j.epsl.2014.12.050.

    Article  CAS  Google Scholar 

  • Menviel, L., Yu, J., Joos, F., Mouchet, A., Meissner, K. J., & England, M. H. (2017). Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study. Paleoceanography, 32, 2–17. https://doi.org/10.1002/2016PA003024.

    Article  Google Scholar 

  • Milkov, A. V. (2004). Global estimates of hydrate-bound gas in marine sediments: How much is really out there? Earth-Science Reviews, 66(3–4), 183–197. https://doi.org/10.1016/j.earscirev.2003.11.002.

  • Möbius, J., Lahajnar, N., & Emeis, K. C. (2010). Diagenetic control of nitrogen isotope ratios in Holocene sapropels and recent sediments from the Eastern Mediterranean Sea. Biogeosciences, 7(11), 3901–3914. https://doi.org/10.5194/bg-7-3901-2010.

    Article  CAS  Google Scholar 

  • Muglia, J., & Schmittner, A. (2015), Glacial Atlantic overturning increased by wind stress in climate models. Geophysical Research Letters, 42. https://doi.org/10.1002/2015GL064583.

  • Murray, L. T., Mickley, L. J., Kaplan, J. O., Sofen, E. D., Pfeiffer, M., & Alexander, B. (2014). Factors controlling variability in the oxidative capacity of the troposphere since the Last Glacial Maximum. Atmospheric Chemistry and Physics, 14, 3589–3622. https://doi.org/10.5194/acp-14-3589-2014.

    Article  CAS  Google Scholar 

  • NEEM Community Members. (2013). Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 493, 489–494. https://doi.org/10.1038/nature11789.

    Article  CAS  Google Scholar 

  • Nijenhuis, I. A., & De Lange, G. J. (2000). Geochemical constraints on Pliocene sapropel formation in the eastern Mediterranean. Mar. Geol., 163, 41–63.

    Article  CAS  Google Scholar 

  • North Greenland Ice Core Project Members. (2004). High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431, 147–151.

    Article  CAS  Google Scholar 

  • Obata, A. (2007). Climate–carbon cycle model response to freshwater discharge into the North Atlantic. Journal of Climate, 20, 5962–5976. https://doi.org/10.1175/2007JCLI1808.1.

    Article  Google Scholar 

  • O’Dowd, C. D., & de Leeuw, G. (2007). Marine aerosol production: A review of the current knowledge. Philosophical Transactions of the Royal Society A, 365(1856), 1753–1774.

    Article  CAS  Google Scholar 

  • Parrenin, F., Masson-Delmotte, V., Köhler, P., Raynaud, D., Paillard, D., Schwander, J., Barbante, C., Landais, A., Wegner, A., & Jouzel, J. (2013). Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science, 339, 1060. https://doi.org/10.1126/science.1226368.

  • Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok Ice Core, Antarctica. Nature, 399, 429–436.

    Article  CAS  Google Scholar 

  • Pickett, E. J., Harrison, S. P., Hope, G., Harle, K., Dodson, J. R., Peter Kershaw, A., et al. (2004). Pollen-based reconstructions of biome distributions for Australia, Southeast Asia and the Pacific (SEAPAC region) at 0, 6000 and 18,000 14C yr BP. Journal of Biogeography, 31, 1381–1444. https://doi.org/10.1111/j.1365-2699.2004.01001.x.

    Article  Google Scholar 

  • Plancq, J., Grossi, V., Pittet, B., Huguet, C., Rosell-Melé, A., & Mattioli, E. (2015). Multi-proxy constraints on sapropel formation during the late Pliocene of central Mediterranean (southwest Sicily). Earth and Planetary Science Letters, 420, 30–44.

    Article  CAS  Google Scholar 

  • Prather, M. J. (2007). Lifetimes and time scales in atmospheric chemistry. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365. http://doi.org/10.1098/rsta.2007.2040.

  • Prentice, I. C., Jolly, D., & BIOME 6000 Participants. (2000). Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. Journal of Biogeography 27, 507–519.

    Google Scholar 

  • Preunkert, S., Legrand, M., Jourdain, B., Moulin, C., Belviso, S., Kasamatsu, N., et al. (2007). Interannual variability of dimethylsulfide in air and seawater and its atmospheric oxidation by-products (methanesulfonate and sulfate) at Dumont d’Urville, coastal Antarctica (1999–2003). Journal of Geophysical Research, 112, D06306. https://doi.org/10.1029/2006JD007585.

    Article  CAS  Google Scholar 

  • Preunkert, S., & Legrand, M. (2013). Towards a quasi-complete reconstruction of past atmospheric aerosol load and composition (organic and inorganic) over Europe since 1920 inferred from Alpine ice cores. Climate of the Past, 9(4), 1403–1416.

    Article  Google Scholar 

  • Quiquet, A., Archibald, A. T., Friend, A. D., Chappellaz, J., Levine, J. G., Stone, E. J., et al. (2015). The relative importance of methane sources and sinks over the Last Interglacial period and into the last glaciation. Quaternary Science Reviews, 112, 1–16. https://doi.org/10.1016/j.quascirev.2015.01.004.

    Article  Google Scholar 

  • Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L., Clausen, H. B., et al. (2014). A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews, 106, 14–28.

    Article  Google Scholar 

  • Rhein, M., et al. (2013). Observations: Ocean. In T. F. Stocker et al. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 255–310). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Roche, D. M., Crosta, X., & Renssen, H. (2012). Evaluating Southern Ocean sea ice for the Last Glacial Maximum and pre-industrial climates: PMIP-2 models and data evidences. Quaternary Science Reviews, 56, 99–106. https://doi.org/10.1016/j.quascirev.2012.09.020.

    Article  Google Scholar 

  • Rogerson, M., Cacho, I., Jimenez-Espejo, F., Reguera, M. I., Sierro, F. J., Martinez-Ruiz, F., Frigola, J., & Canals, M. (2008). A dynamic explanation for the origin of the western Mediterranean organic rich layers. Geochemistry, Geophysics, Geosystems, 9, Q07U01. https://doi.org/10.1029/2007gc001936.

  • Rohling, E. J., Marino, G., & Grant, K. M. (2015). Mediterranean climate and oceanography, and the periodic development of anoxic events (sapropels). Earth-Science Reviews, 143(2015), 62–97.

    Google Scholar 

  • Rosen, J. L., Brook, E. J., Severinghaus, J. P., Blunier, T., Mitchell, L. E., Lee, J. E., et al. (2014). An ice core record of near-synchronous global climate changes at the Bølling transition. Nature Geoscience, 7, 459–463.

    Article  CAS  Google Scholar 

  • Rossignol-Strick, M., Nesteroff, V., Olive, P., & Vergnaud-Grazzini, C. (1982). After the deluge; Mediterranean stagnation and sapropel formation. Nature, 295, 105–110.

    Article  Google Scholar 

  • Saigne, C., & Legrand, M. (1987). Measurements of methanesulphonic acid in Antarctic ice. Nature, 330, 240–242.

    Article  CAS  Google Scholar 

  • Schilt, A., Baumgartner, M., Blunier, T., Schwander, J., Spahni, R., Fischer, H., et al. (2010). Glacial–interglacial and millennial-scale variations in the atmospheric nitrous oxide concentration during the last 800,000 years. Quaternary Science Reviews, 29, 182–192.

    Article  Google Scholar 

  • Schilt, A., Baumgartner, M., Eicher, O., Chappellaz, J., Schwander, J., Fischer, H., et al. (2013). The response of atmospheric nitrous oxide to climate variations during the last glacial period. Geophysical Research Letters, 40, 1888–1893. https://doi.org/10.1002/grl.50380.

    Article  CAS  Google Scholar 

  • Schmitt, J., Schneider, R., Elsig, J., Leuenberger, D., Lourantou, A., Chappellaz, J., Köhler, P., Joos, F., Stocker, T. F., Leuenberger, M., & Fischer, H. (2012). Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science, 336, 711. https://doi.org/10.1126/science.1217161.

  • Schmittner, A., & Galbraith, E. D. (2008). Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature, 456(7220), 373–376. https://doi.org/10.1038/nature07531.

    Article  CAS  Google Scholar 

  • Schneider, R., Schmitt, J., Köhler, P., Joos, F., & Fischer, H. (2013). A reconstruction of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the last glacial inception. Climate of the Past, 9, 2507–2523. https://doi.org/10.5194/cp-9-2507-2013.

    Article  Google Scholar 

  • Schwander, J., & Stauffer, B. (1984). Age difference between polar ice and the air trapped in its bubbles. Nature, 311, 45–47.

    Article  CAS  Google Scholar 

  • Shackleton, N. J. (1977). Carbon-13 in Uvegerina: Tropical rainforest history and the equatorial Pacific carbonate dissolution cycles. In N. R. Andersen & A. Malako (Eds.), The fate of fossil fuel CO2 in the oceans (pp. 401–428). New York: Plenum.

    Google Scholar 

  • Siegenthaler, U., Stocker, T. F., Monnin, E., Lüthi, D., Schwander, J., Stauffer, B., et al. (2005). Stable carbon cycle-climate relationship during the Late Pleistocene. Science, 310(5752), 1313–1317. https://doi.org/10.1126/science.1120130.

    Article  CAS  Google Scholar 

  • Sigman, D. M., & Boyle, E. A. (2000). Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, 859–869.

    Article  CAS  Google Scholar 

  • Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E., & Barker, S. (2010). Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science, 328(5982), 1147–1151. https://doi.org/10.1126/science.1183627.

    Article  CAS  Google Scholar 

  • Skinner, L. C. (2009). Glacial-interglacial atmospheric CO2 change: A possible “standing volume” effect on deep-ocean carbon sequestration. Climate of the Past, 5, 537–550. https://doi.org/10.5194/cp-5-537-2009.

    Article  Google Scholar 

  • Sowers, T., Alley, R. B., & Jubenville, J. (2003). Ice core records of atmospheric N2O covering the last 106,000 years. Science, 301, 945–948.

    Google Scholar 

  • Stephens, B. B., & Keeling, R. F. (2000). The influence of Antarctic sea ice on glacial-interglacial CO2 variations. Nature, 404, 171–174.

    Article  CAS  Google Scholar 

  • Stramma, L., Prince, E. D., Schmidtko, S., Luo, J., Hoolihan, J. P., Visbeck, M., et al. (2012). Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nature Climate Change, 2, 33–37.

    Article  CAS  Google Scholar 

  • Spahni, R., Chappellaz, J., Stocker, T. F., Loulergue, L., Hausammann, G., Kawamura, K., et al. (2005). Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores. Science, 310, 1317–1321.

    Article  CAS  Google Scholar 

  • Stocker, T. F., & Johnsen, S. J. (2003). A minimum thermodynamic model for the bipolar seesaw. Paleoceanography, 18(4), 1087. https://doi.org/10.1029/2003PA000920.

    Article  Google Scholar 

  • Tagliabue, A., Bopp, L., Roche, D. M., Bouttes, N., Dutay, J.-C., Alkama, R., et al. (2009). Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the Last Glacial Maximum. Climate of the Past, 5, 695–706.

    Article  Google Scholar 

  • Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., & Zimov, S. (2009). Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23, GB2023. https://doi.org/10.1029/2008gb003327.

  • Toggweiler, J. R., Russell, J. L., & Carson, S. R. (2006). Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography, 21, PA2005.

    Google Scholar 

  • Tschumi, J., & Stauffer, B. (2000). Reconstructing past atmospheric CO2 concentration based on ice-core analyses: Open questions due to in situ production of CO2 in the ice. Journal of Glaciology, 46(152), 45–53. https://doi.org/10.3189/172756500781833359.

    Article  CAS  Google Scholar 

  • Tschumi, T., Joos, F., Gehlen, M., & Heinze, C. (2011). Deep ocean ventilation, carbon isotopes, marine sedimentation and the deglacial CO2 rise. Climate of the Past, 7, 771–800. https://doi.org/10.5194/cp-7-771-2011.

    Article  Google Scholar 

  • Vadsaria, T., Ramstein, G., Dutay, J. C., Li, L., Ayache, M., & Richon, C. (2019). Simulating the occurrence of the last sapropel event (S1): Mediterranean basin ocean dynamics simulations using Nd isotopic composition modeling. Paleoceanography and Paleoclimatology. http://doi.org/10.1029/2019PA003566.

  • Valdes, P. J., Beerling, D. J., & Johnson, C. E. (2005). The ice age methane budget. Geophysical Research Letters, 32, L02704. https://doi.org/10.1029/2004GL021004.

    Article  Google Scholar 

  • WAIS Divide Project Members. (2015). Precise interpolar phasing of abrupt climate change during the last ice age. Nature, 520, 661–668. https://doi.org/10.1038/nature14401.

    Article  CAS  Google Scholar 

  • Walker, J. C. G. (1980). The oxygen cycle. In O. Hutzinger (Ed.), The natural environment and the biogeochemical cycles (pp. 87–104). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Wang, W., Yung, Y., Lacis, A., Mo, T., & Hansen, J. (1976). Greenhouse effects due to man made perturbations of trace gases. Science, 194(4266), 685–690.

    Article  CAS  Google Scholar 

  • Weber, S. L., Drury, A. J., Toonen, W. H. J., & van Weele, M. (2010). Wetland methane emissions during the Last Glacial Maximum estimated from PMIP2 simulations: Climate, vegetation, and geographic controls. Journal Geophysical Research, 115, D06111. https://doi.org/10.1029/2009JD012110.

    Article  CAS  Google Scholar 

  • Wolff, E. W., Fischer, H., Fundel, F., Ruth, U., Twarloh, B., Littot, G. C., Mulvaney, R., Röthlisberger, R., de Angelis, M., Boutron, C. F., Hansson, M., Jonsell, U., Hutterli, M. A., Lambert, F., Kaufmann, P., Stauffer, B., Stocker, T. F., Steffensen, J. P., Bigler, M., Siggaard-Andersen, M. L., Udisti, R., Becagli, S., Castellano, E., Severi, M., Wagenbach, D., Barbante, C., Gabrielli P., & Gaspari V. (2006). Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440, 23. https://doi.org/10.1038/nature04614.

  • Yin, Q. Z., & Berger, A. (2010). Insolation and CO2 contribution to the interglacial climate before and after the Mid-Brunhes Event. Nature Geoscience, 3, 243–246. https://doi.org/10.1038/ngeo771.

    Article  CAS  Google Scholar 

  • Yin, Q. Z., & Berger, A. (2012). Individual contribution of insolation and CO2 to the interglacial climates of the past 800,000 years. Climate Dynamics, 38(3–4), 709–724.

    Article  Google Scholar 

  • Yu, J., Menviel, L., Jin, Z. D., Thornalley, D. J. R., Barker, S., Marino, G., Rohling, E. J., Cai, Y., Zhang, F., Wang, X., Dai, Y., Chen P., & Broecker W. S. (2016). Sequestration of carbon in the deep Atlantic during the last glaciation. Nature Geoscience, 9, 319–324.

    Google Scholar 

  • Ziegler, M., Tuenter, E., & Lourens, L. J. (2010). The precession phase of the boreal summer monsoon as viewed from the eastern Mediterranean (ODP Site 968). Quaternary Science Reviews, 29, 1481–1490.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaelle Bouttes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bouttes, N., Bopp, L., Albani, S., Ramstein, G., Vadsaria, T., Capron, E. (2021). Biogeochemical Cycles and Aerosols Over the Last Million Years. In: Ramstein, G., Landais, A., Bouttes, N., Sepulchre, P., Govin, A. (eds) Paleoclimatology. Frontiers in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-24982-3_23

Download citation

Publish with us

Policies and ethics