Abstract
The biogeochemical cycles encompass the exchange of chemical elements between reservoirs such as the atmosphere, ocean, land and lithosphere. Those exchanges involve biological, geological and chemical processes, hence the term “biogeochemical cycles”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adams, J. M., Faure, H., Faure-Denard, L., McGlade, J. M., & Woodward, F. I. (1990). Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature, 348, 711–714.
Adkins, J. F., McIntyre, K., & Schrag, D. P. (2002). The salinity, temperature, and δ18O of the glacial deep ocean. Science, 298, 1769–1773. https://doi.org/10.1126/science.1076252.
Adkins, J. F. (2013). The role of deep ocean circulation in setting glacial climates. Paleoceanography, 28, 539–561. https://doi.org/10.1002/palo.20046.
Adloff, F., Somot, S., Sevault, F., Jordà, G., Aznar, R., Déqué, M., et al. (2015). Mediterranean Sea response to climate change in an ensemble of twenty-first century scenarios. Climate Dynamics, 45(9–10), 2775–2802. https://doi.org/10.1007/s00382-015-2507-3.
Ahn, J., & Brook, E. J. (2008). Atmospheric CO2 and climate on millennial time scales during the last glacial period. Science, 322, 83. https://doi.org/10.1126/science.1160832.
Ahn, J., Brook, E. J., Schmittner, A., & Kreutz, K. (2012). Abrupt change in atmospheric CO2 during the last ice age. Geophysical Reseach Letters, 39, L18711. https://doi.org/10.1029/2012GL053018.
Albani, S., Mahowald, N. M., Winckler, G., Anderson, R. F., Bradtmiller, L. I., Delmonte, B., et al. (2015). Twelve thousand years of dust: The Holocene global dust cycle constrained by natural archives. Climate of the Past, 11, 869–903. https://doi.org/10.5194/cp-11-869-2015.
Albani, S., Balkanski, Y., Mahowald, N., Winckler, G., Maggi, V., & Delmonte, B. (2018). Aerosol-climate interactions during the Last Glacial Maximum. Current Climate Change Reports, 4, 99–114. https://doi.org/10.1007/s40641-018-0100-7.
Anderson, R. F., Ali, S., Bradtmiller, L. I., Nielsen, S. H. H., Fleisher, M. Q., Anderson, B. E., et al. (2009). Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science, 323, 1443. https://doi.org/10.1126/science.1167441.
Archer, D., & Maier-Reimer, E. (1994). Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature, 367, 260–263.
Archer, D., Winguth, A., Lea, D., & Mahowald, N. (2000). What caused the glacial/interglacial pCO2 cycles? Reviews of Geophysics, 38, 159–189.
Archer, D. E., Martin, P. A., Milovich, J., Brovkin, V., Plattner, G.-K., & Ashendel, C. (2003). Model sensitivity in the effect of Antarctic sea ice and stratification on atmospheric pCO2. Paleoceanography, 18(1), 1012.
Ayache, M., Dutay, J.-C., Arsouze, T., Révillon, S., Beuvier, J., & Jeandel, C. (2016), High resolution neodymium characterization along the Mediterranean margins and modeling of εNd distribution in the Mediterranean basins. Biogeosciences, (April), 1–31. http://doi.org/10.5194/bg-2016–109.
Barker, S., Diz, P., Vautravers, M. J., Pike, J., Knorr, G., Hall, I. R., et al. (2009). Interhemispheric Atlantic seesaw response during the last deglaciation. Nature, 457, 1097–1102. https://doi.org/10.1038/nature07770.
Barnola, J. M., Raynaud, D., Korotkevich, Y. S., & Lorius, C. (1987). Vostok ice core provides 160,000-year record of atmospheric CO2. Nature, 329, 408–414.
Basak, C., Fröllje, H., Lamy, F., Gersonde, R., Benz, V., Anderson, R. F., et al. (2018). Breakup of last glacial deep stratification in the South Pacific. Science, 359(6378), 900–904. https://doi.org/10.1126/science.aao2473.
Bereiter, B., Lüthi, D., Siegrist, M., Schüpbach, S., Stocker, T. F., & Fischer H. (2012). Mode change of millennial CO2 variability during the last glacial cycle associated with a bipolar marine carbon seesaw. Proceedings of the National Academy of Sciences, 109(25), 9755–9760. https://doi.org/10.1073/pnas.1204069109.
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F., Fischer, H., et al. (2015). Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophysical Reseach Letters, 42, 542–549. https://doi.org/10.1002/2014GL061957.
Berner, R. A., Beerling, D. J., Dudley, R., Robinson, J. M., & Wildman, R. A. (2003). Phanerozoic atmospheric oxygen. Annual Review of Earth and Planetary Sciences, 31, 105–134.
Bigelow, N. H., Brubaker, L. B., Edwards, M. E., Harrison, S. P., Prentice, I. C., Anderson, P. M., Andreev, A. A., Bartlein, P. J., Christensen, T. R., Cramer, W., Kaplan, J. O., Lozhkin, A. V., Matveyeva, N. V., Murray, D. V., McGuire, A. D., Razzhivin, V. Y., Ritchie, J. C., Smith, B., Walker, D. A., Gajewski, K., Wolf, V., Holmqvist, B. H., Igarashi, Y., Kremenetskii, K., Paus, A., Pisaric, M. F. J., & Vokova, V. S. (2003). Climate change and Arctic ecosystems I. Vegetation changes north of 55 °N between the Last Glacial Maximum, mid-Holocene and present. Journal of Geophysical Research, 108(D19), 8170.
Bird, M. I., Lloyd, J., & Farquhar, G. D. (1994). Terrestrial carbon storage at the LGM. Nature, 371, 566.
Blunier, T., Chappellaz, J., Schwander, J., Dällenbach, A., Stauffer, B., Stocker, T. F., et al. (1998). Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature, 394, 739–743.
Buizert, C., Cuffey, K. M., Severinghaus, J. P., Baggenstos, D., Fudge, T. J., Steig, E. J., et al. (2015). The WAIS Divide deep ice core WD2014 chronology—Part 1: Methane synchronization (68–31 ka BP) and the gas age–ice age difference. Climate of the Past, 11, 153–173. https://doi.org/10.5194/cp-11-153-2015.
Bopp, L., Kohfeld, K. E., Quéré, C. L., & Aumont, O. (2003a). Dust impact on marinebiota and atmospheric CO2 during glacial periods. Paleoceanography, 18(2), 1046.
Bopp, L. O., Aumont, S. Belviso, & Monfray, P. (2003b). Potential impact of climate change on marine dimethyl sulfide emissions. Tellus B: Chemical and Physical Meteorology, 55(1), 11–22. https://doi.org/10.3402/tellusb.v55i1.16359.
Bopp, L., et al. (2013). Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences, 10, 6225–6245. https://doi.org/10.5194/bg-10-6225-2013.
Bopp, L., Resplandy, L., Untersee, A., Mezo, P. L., & Kageyama, M. (2017). Ocean (de)oxygenation from the Last Glacial Maximum to the twenty-first century: insights from Earth system models. Philosophical Transactions of the Royal Society A, 375, 20160323.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., & Zhang, X. Y. (2013). Clouds and aerosols. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press.
Bouttes, N., Roche, D. M., & Paillard, D. (2009). Impact of strong deep ocean stratification on the glacial carbon cycle. Paleoceanography, 24, PA3203. https://doi.org/10.1029/2008pa001707.
Bouttes, N., Paillard, D., & Roche, D. M. (2010). Impact of brine-induced stratification on the glacial carbon cycle. Climate of the Past, 6, 575–589. https://doi.org/10.5194/cp-6-575-2010.
Bouttes, N., Paillard, D., Roche, D. M., Brovkin, V., & Bopp, L. (2011). Last Glacial Maximum CO2 and δ13C successfully reconciled. Geophysical Reseach Letters, 38, L02705. https://doi.org/10.1029/2010GL044499.
Bouttes, N., Roche, D., & Paillard, D. (2012). Systematic study of the impact of fresh water fluxes on the glacial carbon cycle. Climate of the Past, 8, 589–607.
Bouttes, N., Swingedouw, D., Roche, D. M., Sanchez-Goni, M. F., & Crosta, X. (2018). Response of the carbon cycle in an intermediate complexity model to the different climate configurations of the last nine interglacials. Climate of the Past, 14, 239–253. https://doi.org/10.5194/cp-14-239-2018.
Bozbiyik, A., Steinacher, M., Joos, F., Stocker, T. F., & Menviel, L. (2011). Fingerprints of changes in the terrestrial carbon cycle in response to large reorganizations in ocean circulation. Climate of the Past, 7, 319–338.
Broecker, W. S., & Peng, T.-H. (Eds.). (1982). Tracers in the Sea. Palisades, New York: Lamont-Doherty Geological Observatory of Columbia University.
Brook, E. J., Harder, S., Severinghaus, J., Steig, E. J., & Sucher, C. M. (2000). On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochemical Cycles, 14(2), 559–572. https://doi.org/10.1029/1999GB001182.
Brovkin, V., Ganopolski, A., Archer, D., & Munhoven, G. (2012). Glacial CO2 cycle as a succession of key physical and biogeochemical processes. Climate of the Past, 8, 251–264. https://doi.org/10.5194/cp-8-251-2012.
Carslaw, K. S., Boucher, O., Spracklen, D. V., Mann, G. W., Rae, J. G. L., Woodward, S., et al. (2010). A review of natural aerosol interactions and feedbacks within the Earth system. Atmospheric Chemistry and Physics, 10(4), 1701–1737.
Catling, D. C., & Claire, M. W. (2005). How Earth’s atmosphere evolved to an oxic state: A status report. Earth and Planetary Science Letters, 237, 1–20.
Chappellaz, J., Barnola, J. M., Raynaud, D., Korotkevich, Y. S., & Lorius, C. (1990). Ice-Core Record of Atmospheric Methane over the Past 160,000 Years. Nature, 345, 127–131.
Chappellaz, J. A., Fung, I. Y., & Thompson, A. M. (1993). The atmospheric CH4 increase since the Last Glacial Maximum. Tellus, 45B, 228–241. 1. Source Estimates.
Chappellaz, J., Brook, E., Blunier, T., & Malaizé, B. (1997). CH4 and δ18O of O2 records from Antarctic and Greenland ice: A clue for stratigraphic disturbance in the bottom part of the Greenland Ice Core Project and the Greenland Ice Sheet Project 2 ice cores. Journal Geophysical Research, 102, 26547–26557.
Charlson, R. J., Lovelock, J. E., Andreae, M. O., & Warren, S. G. (1987). Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326, 655–661.
Ciais, P., Tagliabue, A., Cuntz, M., Bopp, L., Scholze, M., Hoffmann, G., et al. (2012). Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum. Nature Geoscience, 5, 74–79. https://doi.org/10.1038/ngeo1324.
Clement, A. C., & Peterson, L. C. (2008). Mechanisms of abrupt climate change of the last glacial period. Reviews of Geophysics, 46, RG4002. https://doi.org/10.1029/2006rg000204.
Craig, H. (1957). Isotopic standards for carbon and oxygen and correction factors for massspectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta, 12, 133–149.
Crichton, K. A., Bouttes, N., Roche, D. R., Chappellaz, J., & Krinner, G. (2016). Permafrost carbon as a missing link to explain CO2 changes during the last deglaciation. Nature Geoscience, 9, 683–686. https://doi.org/10.1038/ngeo2793.
Crowley, T. (1995). Ice age terrestrial carbon changes revisited. Global Biogeochemical Cycles, 9(3), 377–389.
Crutzen, P. J., & Brühl, C. (1993). A model study of atmospheric temperatures and the concentrations of ozone, hydroxyl, and some other photochemically active gases during the glacial, the pre-industrial Holocene and the present. Geophysical Reseach Letters, 20(11), 1047–1050.
Curry, W. B., & Oppo, D. W. (2005). Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanography, 20, PA1017. https://doi.org/10.1029/2004pa001021.
Dahl-Jensen, D. (2018). Drilling for the oldest ice. Nature Geoscience, 11, 703–704.
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., et al. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218–220.
De Boer, A. M., & Hogg, A. M. C. (2014). Control of the glacial carbon budget by topographically induced mixing. Geophysical Research Letters, 41. doi:10.1002/2014GL059963.
Delmas, R., Ascencio, J. M., & Legrand, M. (1980). Polar ice evidence that atmospheric CO2 20,000 year BP was 50% of present. Nature, 284, 155–157.
Emeis, K.-C., Schulz, H., Struck, U., Rossignol-Strick, M., Erlenkeuser, H., Howell, M. W., Kroon, D., Mackensen, A., Ishizuka, S., Oba, T., Sakamoto, T., & Koizumi, I. (2003). Eastern Mediterranean surface water temperatures and 18 O composition during deposition of sapropels in the late Quaternary. Paleoceanography, 18(1), n/a–n/a. https://doi.org/10.1029/2000pa000617.
EPICA Community Members. (2004). Eight glacial cycles from an Antarctic ice core. Nature, 429, 623–628. https://doi.org/10.1038/nature02599.
EPICA Community Members. (2006). One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 444(7116), 195–198. https://doi.org/10.1038/nature05301.
Ezat, M. M., Rasmussen, T. L., Hönisch, B., Groeneveld, J., & deMenocal, P. (2017). Episodic release of CO2 from the high-latitude North Atlantic Ocean during the last 135 kyr. Nature Communications, 8, 14498.
Ferrari, R., Jansen, M. F., Adkins, J. F., Burke, A., Stewart, A. L., & Thompson, A. F. (2014). Antarctic sea ice control on ocean circulation in present and glacial climates. PNAS, 111(24), 8753–8758. https://doi.org/10.1073/pnas.1323922111.
Fischer, H., Schmitt, J., Lüthi, D., Stocker, T. F., Tschumi, T., Parekh, P., et al. (2010). The role of Southern Ocean processes on orbital and millennial CO2 variations—A synthesis. Quaternary Science Reviews, 29(1–2), 193–205. https://doi.org/10.1016/j.quascirev.2009.06.007.
Flückiger, J., Blunier, T., Stauffer, B., Chappellaz, J., Spahni, R., Kawamura, K., Schwander, J., Stocker, T. F., & Dahl‐Jensen D. (2004). N2O and CH4 variations during the last glacial epoch: Insight into global processes. Global Biogeochemical Cycles, 18, GB1020. https://doi.org/10.1029/2003gb002122.
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O. K., Zweng, M. M., & Johnson, D. R. (2010). World Ocean Atlas 2009, Volume 3: Dissolved oxygen, apparent oxygen utilization, and oxygen saturation. In: S. Levitus (Ed.), NOAA Atlas NESDIS 70, Washington, D.C.: U.S. Government Printing Office, 344 pp.
Gersonde, R., Crosta, X., Abelmann, A., & Armand, L. (2005). Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum—A circum-Antarctic view based on siliceous microfossil records. Quat. Sci. Rev., 24, 869–896.
Goosse, H., Roche, D. M., Mairesse, A., & Berger, M. (2013). Modeling past sea ice changes. Quaternary Science Reviews, 79, 191–206. https://doi.org/10.1016/j.quascirev.2013.03.011.
Gottschalk, J., Skinner, L. C., Lippold, J., Vogel, H., Frank, N., Jaccard, S. L., et al. (2016). Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes. Nature Communications, 7, 11539.
Grant, K. M., Rohling, E. J., Bar-Matthews, M., Ayalon, A., Medina-Elizalde, M., Bronk Ramsey, C., et al. (2012). Rapid coupling between ice volume and polar temperature over the past 150 kyr. Nature, 491, 744–747.
Grimm, R., Maier-Reimer, E., Mikolajewicz, U., Schmiedl, G., Müller-Navarra, K., Adloff, F., Grant, K. M., Ziegler, M., Lourens, L. J., & Emeis, K.-C. (2015). Late glacial initiation of Holocene eastern Mediterranean sapropel formation. Nature Communications, 6(7099), 12 pp. https://doi.org/10.1038/ncomms8099.
Hamon, N., Sepulchre, P., Lefebvre, V., & Ramstein, G. (2013). The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition (ca. 14 Ma). Climate of the Past, 9(6), 2687–2702. https://doi.org/10.5194/cp-9-2687-2013.
Harrison, S. P., Yu, G., Takahara, H., & Prentice, I. C. (2001). Palaeovegetation—Diversity of temperate plants in east Asia. Nature, 413, 129–130.
Hemleben, C., Hoernle, K., Jørgensen, B. B., & Roether, W. (2003). Ostatlantik-Mittelmeer- Schwarzes Meer, Cruise 51, 12 September–28 December 2001. Meteor Ber. 03-1, 213 pp.
Hemming, S. R. (2004). Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics, 42, RG1005. https://doi.org/10.1029/2003rg000128.
Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quaternary Research, 29(2), 142–152. https://doi.org/10.1016/0033-5894(88)90057-9.
Hesse, T., Butzin, M., Bickert, T., & Lohmann, G. (2011). A model-data comparison of δ13C in the glacial Atlantic Ocean. Paleoceanography, 26, PA3220. https://doi.org/10.1029/2010pa002085.
Holland, H. D. (1994). Early Life on Earth. In S. Bengston (Ed.) (pp. 237–244). New York: Columbia University Press.
Jaccard, S. L., & Galbraith, E. D. (2011). Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nature Geoscience, 5, 151–156.
Jaccard, S. L., & Galbraith, E. D. (2012). Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nature Geoscience, 5, 151–156.
Jaccard, S., Galbraith, E., Frölicher, T., & Gruber, N. (2014). Ocean (de)oxygenation across the last deglaciation: Insights for the future. Oceanography, 27, 26–35.
Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., et al. (2005). Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308, 67. https://doi.org/10.1126/science.1105959.
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., et al. (2007). Orbital and Millennial Antarctic climate variability over the past 800,000 years. Science, 317(5839), 793–797.
Kaplan, J. O., Folberth, G., & Hauglustaine, D. A. (2006). Role of methane and biogenic volatile organic compound sources in late glacial and Holocene fluctuations of atmospheric methane concentrations. Global Biogeochemical Cycles, 20, GB2016. https://doi.org/10.1029/2005gb002590.
Kohfeld, K. E., & Harrison, S. P. (2001). DIRTMAP: The geological record of dust. Earth-Science Reviews, 54, 81–114. https://doi.org/10.1016/S0012-8252(01)00042-3.
Kohfeld, K. E., Quéré, C. L., Harrison, S. P., & Anderson, R. F. (2005). Role of marine biology in glacial-interglacial CO2 cycles. Science, 308, 74–78.
Kohfeld, K. E., Graham, R. M., de Boer, A. M., Sime, L. C., Wolff, E. W., Le Quéré, C., et al. (2013). Southern Hemisphere westerly wind changes during the Last Glacial Maximum: Paleo-data synthesis. Quaternary Science Reviews, 68, 76–95. https://doi.org/10.1016/j.quascirev.2013.01.017.
Köhler, P., Knorr, G., & Bard, E. (2014). Permafrost thawing as a possible source of abrupt carbon release at the onset of the Bølling/Allerød. Nature Communications. https://doi.org/10.1038/ncomms6520.
Köng, E., Zaragosi, S., Schneider, J. L., Garlan, T., Bachèlery, P., Sabine, M., et al. (2017). Gravity-driven deposits in an active margin (Ionian Sea) over the last 330,000 years. Geochemistry, Geophysics, Geosystems, 18(11), 4186–4210. https://doi.org/10.1002/2017GC006950.
Kullenberg, B. (1952). On the salinity of the water contained in marine sediments. Meddelanden från Oceanografiska institutet i Göteborg, 21, 1–38.
Lambert, F., Tagliabue, A., Shaffer, G., Lamy, F., Winckler, G., Farias, L., et al. (2015). Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates. Geophysical Research Letters, 42, 6014–6023. https://doi.org/10.1002/2015GL064250.
Landais, A., Dreyfus, G., Capron, E., Jouzel, J., Masson-Delmotte, V., Roche, D. M., et al. (2013). Two-phase change in CO2, Antarctic temperature and global climate during termination II. Nature Geoscience, 6, 1062–1065. https://doi.org/10.1038/NGEO1985.
Legrand, M., Feniet-Saigne, C., Sattzman, E. S., Germain, C., Barkov, N. I., & Petrov, V. N. (1991). Ice-core record of oceanic emissions of dimethylsulphide during the last climate cycle. Nature, 350, 144–146.
Legrand, M., & Mayewski, P. (1997). Glaciochemistry of polar ice cores: A review. Reviews of Geophysics, 35(3), 219–243.
Levine, J. G., Wolff, E. W., Jones, A. E., Sime, L. C., Valdes, P. J., Archibald, A. T., et al. (2011). Reconciling the changes in atmospheric methane sources and sinks between the Last Glacial Maximum and the pre-industrial era. Geophys. Res. Lett., 38, L23804. https://doi.org/10.1029/2011GL049545.
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., et al. (2008). Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature, 453, 383–386. https://doi.org/10.1038/nature06950.
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., et al. (2008). High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453, 379–382. https://doi.org/10.1038/nature06949.
Lourantou, A., Lavrič, J. V., Köhler, P., Barnola, J.-M., Paillard, D., Michel, E., Raynaud, D., & Chappellaz, J. (2010). Constraint of the CO2 rise by new atmospheric carbon isotopic measurements during the last deglaciation. Global Biogeochemical Cycles, 24, GB2015. https://doi.org/10.1029/2009gb003545.
Mahowald, N. M., Scanza, R., Brahney, J., Goodale, C. L., Hess, P. G., Moore, J. K., et al. (2017). Aerosol deposition impacts on land and ocean carbon cycles. Current Climate Change Reports, 3(1), 16–31.
Marcott, S. A., Bauska, T. K., Buizert, C., Steig, E. J., Rosen, J. L., Cuffey, K. M., et al. (2014). Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature, 514, 616–619. https://doi.org/10.1038/nature13799.
Mariotti, V. (2013). Le cycle du carbone en climat glaciaire: état moyen et variabilité, Ph.D. thesis. 252 p.
Marchal, O., & Curry, W. B. (2008). On the Abyssal circulation in the Glacial Atlantic. Journal of Physical Oceanography, 38, 2014–2037. https://doi.org/10.1175/2008JPO3895.1.
Martinez-Ruiz, F., Kastner, M., Paytan, A., Ortega-Huertas, M., & Bernasconi, S. (2000). Geochemical evidence for enhanced productivity during S1 sapropel deposition in the eastern Mediterranean. Paleoceanography, 15(2), 200–209. https://doi.org/10.1029/1999PA000419.
Marzocchi, A., & Jansen, M. F. (2017). Connecting Antarctic sea ice to deep-ocean circulation in modern and glacial climate simulations. Geophysical Research Letters, 44, 6286–6295. https://doi.org/10.1002/2017GL073936.
Maslin, M., Adams, J., Thomas, E., Faure, H., & Haines-Young, R. (1995). Estimating the carbon transfer between the ocean, atmosphere and the terrestrial biosphere since the Last Glacial Maximum. Terra Nova, 7(3), 358–366.
Matsumoto, K., & Yokoyama, Y. (2013). Atmospheric Δ14C reduction in simulations of Atlantic overturning circulation shutdown, Global Biogeochemical Cycles, 27. https://doi.org/10.1002/gbc.20035.
Menviel, L., Timmermann, A., Mouchet, A., & Timm, O. (2008a). Climate and marine carbon cycle response to changes in the strength of the Southern Hemispheric westerlies. Paleoceanography, 23, PA4201.
Menviel, L., Timmermann, A., Mouchet, A., & Timm, O. (2008b). Meridional reorganizations of marine and terrestrial productivity during Heinrich events. Paleoceanography, 23, PA1203. https://doi.org/10.1029/2007pa001445.
Menviel, L., Spence, P., & England, M. H. (2015). Contribution of enhanced Antarctic bottom water formation to Antarctic warm events and millennial-scale atmospheric CO2 increase. Earth and Planetary Science Letters, 413, 37–50. https://doi.org/10.1016/j.epsl.2014.12.050.
Menviel, L., Yu, J., Joos, F., Mouchet, A., Meissner, K. J., & England, M. H. (2017). Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study. Paleoceanography, 32, 2–17. https://doi.org/10.1002/2016PA003024.
Milkov, A. V. (2004). Global estimates of hydrate-bound gas in marine sediments: How much is really out there? Earth-Science Reviews, 66(3–4), 183–197. https://doi.org/10.1016/j.earscirev.2003.11.002.
Möbius, J., Lahajnar, N., & Emeis, K. C. (2010). Diagenetic control of nitrogen isotope ratios in Holocene sapropels and recent sediments from the Eastern Mediterranean Sea. Biogeosciences, 7(11), 3901–3914. https://doi.org/10.5194/bg-7-3901-2010.
Muglia, J., & Schmittner, A. (2015), Glacial Atlantic overturning increased by wind stress in climate models. Geophysical Research Letters, 42. https://doi.org/10.1002/2015GL064583.
Murray, L. T., Mickley, L. J., Kaplan, J. O., Sofen, E. D., Pfeiffer, M., & Alexander, B. (2014). Factors controlling variability in the oxidative capacity of the troposphere since the Last Glacial Maximum. Atmospheric Chemistry and Physics, 14, 3589–3622. https://doi.org/10.5194/acp-14-3589-2014.
NEEM Community Members. (2013). Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 493, 489–494. https://doi.org/10.1038/nature11789.
Nijenhuis, I. A., & De Lange, G. J. (2000). Geochemical constraints on Pliocene sapropel formation in the eastern Mediterranean. Mar. Geol., 163, 41–63.
North Greenland Ice Core Project Members. (2004). High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431, 147–151.
Obata, A. (2007). Climate–carbon cycle model response to freshwater discharge into the North Atlantic. Journal of Climate, 20, 5962–5976. https://doi.org/10.1175/2007JCLI1808.1.
O’Dowd, C. D., & de Leeuw, G. (2007). Marine aerosol production: A review of the current knowledge. Philosophical Transactions of the Royal Society A, 365(1856), 1753–1774.
Parrenin, F., Masson-Delmotte, V., Köhler, P., Raynaud, D., Paillard, D., Schwander, J., Barbante, C., Landais, A., Wegner, A., & Jouzel, J. (2013). Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science, 339, 1060. https://doi.org/10.1126/science.1226368.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok Ice Core, Antarctica. Nature, 399, 429–436.
Pickett, E. J., Harrison, S. P., Hope, G., Harle, K., Dodson, J. R., Peter Kershaw, A., et al. (2004). Pollen-based reconstructions of biome distributions for Australia, Southeast Asia and the Pacific (SEAPAC region) at 0, 6000 and 18,000 14C yr BP. Journal of Biogeography, 31, 1381–1444. https://doi.org/10.1111/j.1365-2699.2004.01001.x.
Plancq, J., Grossi, V., Pittet, B., Huguet, C., Rosell-Melé, A., & Mattioli, E. (2015). Multi-proxy constraints on sapropel formation during the late Pliocene of central Mediterranean (southwest Sicily). Earth and Planetary Science Letters, 420, 30–44.
Prather, M. J. (2007). Lifetimes and time scales in atmospheric chemistry. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365. http://doi.org/10.1098/rsta.2007.2040.
Prentice, I. C., Jolly, D., & BIOME 6000 Participants. (2000). Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. Journal of Biogeography 27, 507–519.
Preunkert, S., Legrand, M., Jourdain, B., Moulin, C., Belviso, S., Kasamatsu, N., et al. (2007). Interannual variability of dimethylsulfide in air and seawater and its atmospheric oxidation by-products (methanesulfonate and sulfate) at Dumont d’Urville, coastal Antarctica (1999–2003). Journal of Geophysical Research, 112, D06306. https://doi.org/10.1029/2006JD007585.
Preunkert, S., & Legrand, M. (2013). Towards a quasi-complete reconstruction of past atmospheric aerosol load and composition (organic and inorganic) over Europe since 1920 inferred from Alpine ice cores. Climate of the Past, 9(4), 1403–1416.
Quiquet, A., Archibald, A. T., Friend, A. D., Chappellaz, J., Levine, J. G., Stone, E. J., et al. (2015). The relative importance of methane sources and sinks over the Last Interglacial period and into the last glaciation. Quaternary Science Reviews, 112, 1–16. https://doi.org/10.1016/j.quascirev.2015.01.004.
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L., Clausen, H. B., et al. (2014). A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews, 106, 14–28.
Rhein, M., et al. (2013). Observations: Ocean. In T. F. Stocker et al. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 255–310). Cambridge, UK: Cambridge University Press.
Roche, D. M., Crosta, X., & Renssen, H. (2012). Evaluating Southern Ocean sea ice for the Last Glacial Maximum and pre-industrial climates: PMIP-2 models and data evidences. Quaternary Science Reviews, 56, 99–106. https://doi.org/10.1016/j.quascirev.2012.09.020.
Rogerson, M., Cacho, I., Jimenez-Espejo, F., Reguera, M. I., Sierro, F. J., Martinez-Ruiz, F., Frigola, J., & Canals, M. (2008). A dynamic explanation for the origin of the western Mediterranean organic rich layers. Geochemistry, Geophysics, Geosystems, 9, Q07U01. https://doi.org/10.1029/2007gc001936.
Rohling, E. J., Marino, G., & Grant, K. M. (2015). Mediterranean climate and oceanography, and the periodic development of anoxic events (sapropels). Earth-Science Reviews, 143(2015), 62–97.
Rosen, J. L., Brook, E. J., Severinghaus, J. P., Blunier, T., Mitchell, L. E., Lee, J. E., et al. (2014). An ice core record of near-synchronous global climate changes at the Bølling transition. Nature Geoscience, 7, 459–463.
Rossignol-Strick, M., Nesteroff, V., Olive, P., & Vergnaud-Grazzini, C. (1982). After the deluge; Mediterranean stagnation and sapropel formation. Nature, 295, 105–110.
Saigne, C., & Legrand, M. (1987). Measurements of methanesulphonic acid in Antarctic ice. Nature, 330, 240–242.
Schilt, A., Baumgartner, M., Blunier, T., Schwander, J., Spahni, R., Fischer, H., et al. (2010). Glacial–interglacial and millennial-scale variations in the atmospheric nitrous oxide concentration during the last 800,000 years. Quaternary Science Reviews, 29, 182–192.
Schilt, A., Baumgartner, M., Eicher, O., Chappellaz, J., Schwander, J., Fischer, H., et al. (2013). The response of atmospheric nitrous oxide to climate variations during the last glacial period. Geophysical Research Letters, 40, 1888–1893. https://doi.org/10.1002/grl.50380.
Schmitt, J., Schneider, R., Elsig, J., Leuenberger, D., Lourantou, A., Chappellaz, J., Köhler, P., Joos, F., Stocker, T. F., Leuenberger, M., & Fischer, H. (2012). Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science, 336, 711. https://doi.org/10.1126/science.1217161.
Schmittner, A., & Galbraith, E. D. (2008). Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature, 456(7220), 373–376. https://doi.org/10.1038/nature07531.
Schneider, R., Schmitt, J., Köhler, P., Joos, F., & Fischer, H. (2013). A reconstruction of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the last glacial inception. Climate of the Past, 9, 2507–2523. https://doi.org/10.5194/cp-9-2507-2013.
Schwander, J., & Stauffer, B. (1984). Age difference between polar ice and the air trapped in its bubbles. Nature, 311, 45–47.
Shackleton, N. J. (1977). Carbon-13 in Uvegerina: Tropical rainforest history and the equatorial Pacific carbonate dissolution cycles. In N. R. Andersen & A. Malako (Eds.), The fate of fossil fuel CO2 in the oceans (pp. 401–428). New York: Plenum.
Siegenthaler, U., Stocker, T. F., Monnin, E., Lüthi, D., Schwander, J., Stauffer, B., et al. (2005). Stable carbon cycle-climate relationship during the Late Pleistocene. Science, 310(5752), 1313–1317. https://doi.org/10.1126/science.1120130.
Sigman, D. M., & Boyle, E. A. (2000). Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, 859–869.
Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E., & Barker, S. (2010). Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science, 328(5982), 1147–1151. https://doi.org/10.1126/science.1183627.
Skinner, L. C. (2009). Glacial-interglacial atmospheric CO2 change: A possible “standing volume” effect on deep-ocean carbon sequestration. Climate of the Past, 5, 537–550. https://doi.org/10.5194/cp-5-537-2009.
Sowers, T., Alley, R. B., & Jubenville, J. (2003). Ice core records of atmospheric N2O covering the last 106,000 years. Science, 301, 945–948.
Stephens, B. B., & Keeling, R. F. (2000). The influence of Antarctic sea ice on glacial-interglacial CO2 variations. Nature, 404, 171–174.
Stramma, L., Prince, E. D., Schmidtko, S., Luo, J., Hoolihan, J. P., Visbeck, M., et al. (2012). Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nature Climate Change, 2, 33–37.
Spahni, R., Chappellaz, J., Stocker, T. F., Loulergue, L., Hausammann, G., Kawamura, K., et al. (2005). Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores. Science, 310, 1317–1321.
Stocker, T. F., & Johnsen, S. J. (2003). A minimum thermodynamic model for the bipolar seesaw. Paleoceanography, 18(4), 1087. https://doi.org/10.1029/2003PA000920.
Tagliabue, A., Bopp, L., Roche, D. M., Bouttes, N., Dutay, J.-C., Alkama, R., et al. (2009). Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the Last Glacial Maximum. Climate of the Past, 5, 695–706.
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., & Zimov, S. (2009). Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23, GB2023. https://doi.org/10.1029/2008gb003327.
Toggweiler, J. R., Russell, J. L., & Carson, S. R. (2006). Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography, 21, PA2005.
Tschumi, J., & Stauffer, B. (2000). Reconstructing past atmospheric CO2 concentration based on ice-core analyses: Open questions due to in situ production of CO2 in the ice. Journal of Glaciology, 46(152), 45–53. https://doi.org/10.3189/172756500781833359.
Tschumi, T., Joos, F., Gehlen, M., & Heinze, C. (2011). Deep ocean ventilation, carbon isotopes, marine sedimentation and the deglacial CO2 rise. Climate of the Past, 7, 771–800. https://doi.org/10.5194/cp-7-771-2011.
Vadsaria, T., Ramstein, G., Dutay, J. C., Li, L., Ayache, M., & Richon, C. (2019). Simulating the occurrence of the last sapropel event (S1): Mediterranean basin ocean dynamics simulations using Nd isotopic composition modeling. Paleoceanography and Paleoclimatology. http://doi.org/10.1029/2019PA003566.
Valdes, P. J., Beerling, D. J., & Johnson, C. E. (2005). The ice age methane budget. Geophysical Research Letters, 32, L02704. https://doi.org/10.1029/2004GL021004.
WAIS Divide Project Members. (2015). Precise interpolar phasing of abrupt climate change during the last ice age. Nature, 520, 661–668. https://doi.org/10.1038/nature14401.
Walker, J. C. G. (1980). The oxygen cycle. In O. Hutzinger (Ed.), The natural environment and the biogeochemical cycles (pp. 87–104). Berlin, Heidelberg: Springer.
Wang, W., Yung, Y., Lacis, A., Mo, T., & Hansen, J. (1976). Greenhouse effects due to man made perturbations of trace gases. Science, 194(4266), 685–690.
Weber, S. L., Drury, A. J., Toonen, W. H. J., & van Weele, M. (2010). Wetland methane emissions during the Last Glacial Maximum estimated from PMIP2 simulations: Climate, vegetation, and geographic controls. Journal Geophysical Research, 115, D06111. https://doi.org/10.1029/2009JD012110.
Wolff, E. W., Fischer, H., Fundel, F., Ruth, U., Twarloh, B., Littot, G. C., Mulvaney, R., Röthlisberger, R., de Angelis, M., Boutron, C. F., Hansson, M., Jonsell, U., Hutterli, M. A., Lambert, F., Kaufmann, P., Stauffer, B., Stocker, T. F., Steffensen, J. P., Bigler, M., Siggaard-Andersen, M. L., Udisti, R., Becagli, S., Castellano, E., Severi, M., Wagenbach, D., Barbante, C., Gabrielli P., & Gaspari V. (2006). Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440, 23. https://doi.org/10.1038/nature04614.
Yin, Q. Z., & Berger, A. (2010). Insolation and CO2 contribution to the interglacial climate before and after the Mid-Brunhes Event. Nature Geoscience, 3, 243–246. https://doi.org/10.1038/ngeo771.
Yin, Q. Z., & Berger, A. (2012). Individual contribution of insolation and CO2 to the interglacial climates of the past 800,000 years. Climate Dynamics, 38(3–4), 709–724.
Yu, J., Menviel, L., Jin, Z. D., Thornalley, D. J. R., Barker, S., Marino, G., Rohling, E. J., Cai, Y., Zhang, F., Wang, X., Dai, Y., Chen P., & Broecker W. S. (2016). Sequestration of carbon in the deep Atlantic during the last glaciation. Nature Geoscience, 9, 319–324.
Ziegler, M., Tuenter, E., & Lourens, L. J. (2010). The precession phase of the boreal summer monsoon as viewed from the eastern Mediterranean (ODP Site 968). Quaternary Science Reviews, 29, 1481–1490.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Bouttes, N., Bopp, L., Albani, S., Ramstein, G., Vadsaria, T., Capron, E. (2021). Biogeochemical Cycles and Aerosols Over the Last Million Years. In: Ramstein, G., Landais, A., Bouttes, N., Sepulchre, P., Govin, A. (eds) Paleoclimatology. Frontiers in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-24982-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-24982-3_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-24981-6
Online ISBN: 978-3-030-24982-3
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)
