Skip to main content

Oxidatively Modified Proteins and Maintenance Systems as Biomarkers of Aging

  • Chapter
  • First Online:
Biomarkers of Human Aging

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 10))

  • 1392 Accesses

Abstract

The accumulation of non-functional oxidized proteins is a hallmark of aging both in cells and in the body. This age-related build-up of proteins modified by oxidative processes results, at least in part, from an increase in reactive oxygen species and other toxic compounds from both cellular metabolism and external environmental factors. Failure of protein maintenance (i.e. oxidized protein degradation and repair) is another major contributor to the age-associated accumulation of damaged proteins. Oxidative damage to the cellular proteome, leading to the formation of carbonylated proteins derives from the direct oxidation of several amino acids side chains and also through protein adducts formation with lipid peroxidation products and dicarbonyl glycating compounds. Since the accumulation of oxidatively damaged proteins is believed to participate to the age-related decline in cellular function, their identification has been achieved in human or mammalian animal models of aging and age-related diseases as well as in human fibroblasts and myoblasts during cellular senescence and upon oxidative stress. Indeed, the identification of damaged protein targets is expected not only to define potential biomarkers of aging but also to give insight into the mechanisms by which these damaged proteins accumulate and may contribute to cellular dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed EK, Picot CR, Bulteau AL, Friguet B (2007) Protein oxidative modifications and replicative senescence of WI-38 human embryonic fibroblasts. Ann N Y Acad Sci 1119:88–96

    Article  CAS  PubMed  Google Scholar 

  • Ahmed EK, Rogowska-Wrzesinska A, Roepstorff P, Bulteau AL, Friguet B (2010) Protein modification and replicative senescence of WI-38 human embryonic fibroblasts. Aging Cell 9:252–272

    Article  CAS  PubMed  Google Scholar 

  • Altun M, Besche HC, Overkleeft HS, Piccirillo R, Edelmann MJ, Kessler BM, Goldberg AL, Ulfhake B (2010) Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway. J Biol Chem 285:39597–39608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Avery SV (2011) Molecular targets of oxidative stress. Biochem J 434:201–210

    Article  CAS  PubMed  Google Scholar 

  • Baraibar MA, Friguet B (2012) Changes of the proteasomal system during the aging process. Prog Mol Biol Transl Sci 109:249–275

    Article  CAS  PubMed  Google Scholar 

  • Baraibar MA, Friguet B (2013) Oxidative proteome modifications target specific cellular pathways during oxidative stress, cellular senescence and aging. Exp Gerontol 48:620–625

    Article  CAS  PubMed  Google Scholar 

  • Baraibar MA, Hyzewicz J, Rogowska-Wrzesinska A, Ladouce R, Roepstorff P, Mouly V, Friguet B (2011) Oxidative stress-induced proteome alterations target different cellular pathways in human myoblasts. Free Radic Biol Med 51:1522–1532

    Article  CAS  PubMed  Google Scholar 

  • Baraibar MA, Ladouce R, Friguet B (2012a) A method for detecting and/or quantifying carbonylated proteins. WO/2012/175519

    Google Scholar 

  • Baraibar MA, Barbeito AG, Muhoberac BB, Vidal RA (2012b) A mutant light-chain ferritin that causes neurodegeneration has enhanced propensity toward oxidative damage. Free Radic Biol Med 52:1692–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baraibar MA, Liu L, Ahmed EK, Friguet B (2012c) Protein oxidative damage at the crossroads of cellular senescence, ageing, and age-related diseases. Oxid Med Cell Longev. 2012:919832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baraibar MA, Ladouce R, Friguet B (2013) Proteomic quantification and identification of carbonylated proteins upon oxidative stress and during cellular aging. J Proteomics 92:63–70

    Article  CAS  PubMed  Google Scholar 

  • Baraibar MA, Hyzewicz J, Rogowska-Wrzesinska A, Bulteau AL, Prip-Buus C, Butler-Browne G, Friguet B (2016) Impaired energy metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes. Aging (Albany NY) 8:3375–3389

    Article  CAS  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    Article  CAS  PubMed  Google Scholar 

  • Biteau B, Labarre J, Toledano MB (2003) ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425:980–4

    Article  CAS  PubMed  Google Scholar 

  • Boschi-Muller S, Gand A, Branlant G (2008) The methionine sulfoxide reductases: Catalysis and substrate specificities. Arch Biochem Biophys 474:266–273

    Article  CAS  PubMed  Google Scholar 

  • Brennan LA, Lee W, Cowell T, Giblin F, Kantorow M (2009) Deletion of mouse MsrA results in HBO-induced cataract: MsrA repairs mitochondrial cytochrome c. Mol Vis 15:985–999

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breusing N, Grune T (2008) Regulation of proteasome-mediated protein degradation during oxidative stress and aging. Biol Chem 389:203–209

    Article  CAS  PubMed  Google Scholar 

  • Brovelli A, Seppi C, Castellana AM, De Renzis MR, Blasina A, Balduini C (1990) Oxidative lesion to membrane proteins in senescent erythrocytes. Biomed Biochim Acta 49:S218–S223

    CAS  PubMed  Google Scholar 

  • Bulteau AL, Verbeke P, Petropoulos I, Chaffotte AF, Friguet B (2001) Proteasome inhibition in glyoxal-treated fibroblasts and resistance of glycated glucose-6-phosphate dehydrogenase to 20 S proteasome degradation in vitro. J Biol Chem 276:45662–45668

    Article  CAS  PubMed  Google Scholar 

  • Bulteau AL, Szweda LI, Friguet B (2002) Age-dependent declines in proteasome activity in the heart. Arch Biochem Biophys 397:298–304

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA, Poon HF, St Clair D, Keller JN, Pierce WM, Klein JB, Markesbery WR (2006) Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer’s disease. Neurobiol Dis 22:223–232

    Article  CAS  PubMed  Google Scholar 

  • Cabreiro F, Picot CR, Perichon M, Castel J, Friguet B, Petropoulos I (2008) Overexpression of mitochondrial methionine sulfoxide reductase B2 protects leukemia cells from oxidative stress-induced cell death and protein damage. J Biol Chem 283:16673–16681

    Article  CAS  PubMed  Google Scholar 

  • Carrard G, Dieu M, Raes M, Toussaint O, Friguet B (2003) Impact of ageing on proteasome structure and function in human lymphocytes. Int J Biochem Cell Biol 35:728–739

    Article  CAS  PubMed  Google Scholar 

  • Chondrogianni N, Gonos ES (2005) Proteasome dysfunction in mammalian aging: steps and factors involved. Exp Gerontol 40:931–938

    Article  CAS  PubMed  Google Scholar 

  • Chondrogianni N, Petropoulos I, Franceschi C, Friguet B, Gonos ES (2000) Fibroblast cultures from healthy centenarians have an active proteasome. Exp Gerontol 35:721–728

    Article  CAS  PubMed  Google Scholar 

  • Chondrogianni N, Stratford FL, Trougakos IP, Friguet B, Rivett AJ, Gonos ES (2003) Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation. J Biol Chem 278:28026–28037

    Article  CAS  PubMed  Google Scholar 

  • Chondrogianni N, Tzavelas C, Pemberton AJ, Nezis IP, Rivett AJ, Gonos ES (2005) Overexpression of proteasome beta5 assembled subunit increases the amount of proteasome and confers ameliorated response to oxidative stress and higher survival rates. J Biol Chem 280:11840–11850

    Article  CAS  PubMed  Google Scholar 

  • Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES (2014) Protein damage, repair and proteolysis. Mol Aspects Med 35:1–71

    Article  CAS  PubMed  Google Scholar 

  • Chondrogianni N, Georgila K, Kourtis N, Tavernarakis N, Gonos ES (2015) 20S proteasome activation promotes life span extension and resistance to proteotoxicity in Caenorhabditis elegans. FASEB J. 29:611–622

    Article  CAS  PubMed  Google Scholar 

  • Conconi M, Szweda LI, Levine RL, Stadtman ER, Friguet B (1996) Age-related decline of rat liver multicatalytic proteinase activity and protection from oxidative inactivation by heat-shock protein 90. Arch Biochem Biophys 331:232–234

    Article  CAS  PubMed  Google Scholar 

  • Cook C, Gass J, Dunmore J, Tong J, Taylor J, Eriksen J, McGowan E, Lewis J, Johnston J, Petrucelli L (2009) Aging is not associated with proteasome impairment in UPS reporter mice. PLoS ONE 4:e5888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003) Protein carbonylation in human diseases. Trends Mol. Med. 9:169–176

    Article  CAS  PubMed  Google Scholar 

  • Debacq-Chainiaux F, Borlon C, Pascal T, Royer V, Eliaers F, Ninane N, Carrard G, Friguet B, de Longueville F, Boffe S, Remacle J, Toussaint O (2005) Repeated exposure of human skin fibroblasts to UVB at subcytotoxic level triggers premature senescence through the TGF-beta1 signaling pathway. J Cell Sci 118:743–758

    Article  CAS  PubMed  Google Scholar 

  • Farout L, Friguet B (2006) Proteasome function in aging and oxidative stress: implications in protein maintenance failure. Antioxid Redox Signal 8:205–216

    Article  CAS  PubMed  Google Scholar 

  • Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G. Inflamm-aging (2000) An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254

    Google Scholar 

  • Friguet B (2006) Oxidized protein degradation and repair in ageing and oxidative stress. FEBS Lett 580:2910–2916

    Article  CAS  PubMed  Google Scholar 

  • Friguet B, Szweda LI (1997) Inhibition of the multicatalytic proteinase (proteasome) by 4-hydroxy-2-nonenal cross-linked protein. FEBS Lett 405:21–25

    Article  CAS  PubMed  Google Scholar 

  • Gabbita SP, Aksenov MY, Lovell MA, Markesbery WR (1999) Decrease in peptide methionine sulfoxide reductase in Alzheimer’s disease brain. J Neurochem 73:1660–1666

    Article  CAS  PubMed  Google Scholar 

  • Gil-Mohapel J, Brocardo PS, Christie BR (2014) The role of oxidative stress in Huntington’s disease: are antioxidants good therapeutic candidates? Curr Drug Targets 15:454–468

    Article  CAS  PubMed  Google Scholar 

  • Giulivi C, Traaseth NJ, Davies KJ (2003) Tyrosine oxidation products: analysis and biological relevance. Amino Acids 25:227–232

    Article  CAS  PubMed  Google Scholar 

  • Glaser CB, Yamin G, Uversky VN, Fink AL (2005) Methionine oxidation, alpha-synuclein and Parkinson’s disease. Biochim Biophys Acta 1703:157–169

    Article  CAS  PubMed  Google Scholar 

  • Grune T, Merker K, Sandig G, Davies KJ (2003) Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun 305:709–718

    Article  CAS  PubMed  Google Scholar 

  • Hamer G, Matilainen O, Holmberg CI (2010) A photoconvertible reporter of the ubiquitin-proteasome system in vivo. Nat Methods 7:473–478

    Article  CAS  PubMed  Google Scholar 

  • Hamon MP, Bulteau AL, Friguet B (2015) Mitochondrial proteases and protein quality control in ageing and longevity. Ageing Res Rev 23:56–66

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Goto S (1998) Age-related changes in the 20S and 26S proteasome activities in the liver of male F344 rats. Mech Ageing Dev 102:55–66

    Article  CAS  PubMed  Google Scholar 

  • Horiuchi S, Araki N (1994) Advanced glycation end products of the Maillard reaction and their relation to aging. Gerontology 40(Suppl 2):10–15

    Article  CAS  PubMed  Google Scholar 

  • Hou L, Kang I, Marchant RE, Zagorski MG (2002) Methionine 35 oxidation reduces fibril assembly of the amyloid abeta-(1-42) peptide of Alzheimer’s disease. J Biol Chem 277:40173–40176

    Article  CAS  PubMed  Google Scholar 

  • Huber N, Sakai N, Eismann T, Shin T, Kuboki S, Blanchard J, Schuster R, Edwards MJ, Wong HR, Lentsch AB (2009) Age-related decrease in proteasome expression contributes to defective nuclear factor-kappaB activation during hepatic ischemia/reperfusion. Hepatology 49:1718–1728

    Article  CAS  PubMed  Google Scholar 

  • Hwang JS, Chang I, Kim S (2007) Age-associated decrease in proteasome content and activities in human dermal fibroblasts: restoration of normal level of proteasome subunits reduces aging markers in fibroblasts from elderly persons. J Gerontol A Biol Sci Med Sci 62:490–9

    Article  Google Scholar 

  • Kapphahn RJ, Giwa BM, Berg KM, Roehrich H, Feng X, Olsen TW, Ferrington DA (2006) Retinal proteins modified by 4-hydroxynonenal: identification of molecular targets. Exp Eye Res 83:165–175

    Article  CAS  PubMed  Google Scholar 

  • Keller JN, Huang FF, Markesbery WR (2000) Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience 98:149–156

    Article  CAS  PubMed  Google Scholar 

  • Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res 65:177–185

    CAS  PubMed  Google Scholar 

  • Kregel KC, Zhang HJ (2007) An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 292:R18–R36

    Article  CAS  PubMed  Google Scholar 

  • Kruegel U, Robison B, Dange T, Kahlert G, Delaney JR, Kotireddy S, Tsuchiya M, Tsuchiyama S, Murakami CJ, Schleit J, Sutphin G, Carr D, Tar K, Dittmar G, Kaeberlein M, Kennedy BK, Schmidt M (2011) Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genet 7:e1002253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Boulch M, Ahmed EK, Rogowska-Wrzesinska A, Baraibar MA, Friguet B (2018) Proteome oxidative carbonylation during oxidative stress-induced premature senescence of WI-38 human fibroblasts. Mech Ageing Dev 170:59–71

    Article  PubMed  CAS  Google Scholar 

  • Levine RL (2002) Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32:790–796

    Article  CAS  PubMed  Google Scholar 

  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging Cell 153:1194–217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Louie JL, Kapphahn RJ, Ferrington DA (2002) Proteasome function and protein oxidation in the aged retina. Exp Eye Res 75:271–284

    Article  CAS  PubMed  Google Scholar 

  • Lourenço dos Santos S, Baraibar MA, Lundberg S, Eeg-Olofsson O, Larsson L, Friguet B (2015) Oxidative proteome alterations during skeletal muscle ageing. Redox Biol 5:267–74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lourenço dos Santos S, Petropoulos I, Friguet B (2018) The oxidized protein repair enzymes methionine sulfoxide reductases and their roles in protecting against oxidative stress, in ageing and in regulating protein function. Antioxidants (Basel) 7(12). pii: E191

    Google Scholar 

  • Marques C, Pereira P, Taylor A, Liang JN, Reddy VN, Szweda LI, Shang F (2004) Ubiquitin-dependent lysosomal degradation of the HNE-modified proteins in lens epithelial cells. FASEB J 18:1424–1426

    Article  CAS  PubMed  Google Scholar 

  • Martinez A, Portero-Otin M, Pamplona R, Ferrer I (2010) Protein targets of oxidative damage in human neurodegenerative diseases with abnormal protein aggregates. Brain Pathol 20:281–297

    Article  CAS  PubMed  Google Scholar 

  • Mecocci P, Fano G, Fulle S, MacGarvey U, Shinobu L, Polidori MC, Cherubini A, Vecchiet J, Senin U, Beal MF (1999) Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic Biol Med 26:303–308

    Article  CAS  PubMed  Google Scholar 

  • Merker K, Grune T (2000) Proteolysis of oxidised proteins and cellular senescence. Exp Gerontol 35:779–786

    Article  CAS  PubMed  Google Scholar 

  • Moskovitz J, Bar-Noy S, Williams WM, Requena J, Berlett BS, Stadtman ER (2001) Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc Natl Acad Sci U S A 98:12920–5

    Article  CAS  Google Scholar 

  • Moskovitz J, Du F, Bowman CF, Yan SS (2016) Methionine sulfoxide reductase a affects beta-amyloid solubility and mitochondrial function in a mouse model of Alzheimer’s disease. Am J Physiol Endocrinol Metab 310:E388–E393

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez VI, Buffenstein R, Masamsetti V, Leonard S, Salmon AB, Mele J, Andziak B, Yang T, Edrey Y, Friguet B, Ward W, Richardson A, Chaudhuri A (2009) Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc Natl Acad Sci U S A 106:3059–64

    Article  CAS  Google Scholar 

  • Petropoulos I, Friguet B (2005) Protein maintenance in aging and replicative senescence: a role for the peptide methionine sulfoxide reductases. Biochim Biophys Acta 1703:261–266

    Article  CAS  PubMed  Google Scholar 

  • Petropoulos I, Conconi M, Wang X. Hoenel B, Bregegere F, Milner Y, Friguet B (2000) Increase of oxidatively modified protein is associated with a decrease of proteasome activity and content in aging epidermal cells. J Gerontol A Biol Sci Med Sci 55:B220–7

    Article  CAS  Google Scholar 

  • Petropoulos I, Mary J, Perichon M, Friguet B (2001) Rat peptide methionine sulphoxide reductase: cloning of the cDNA, and down-regulation of gene expression and enzyme activity during aging. Biochem J 355:819–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picot CR, Perichon M, Cintrat J-C, Friguet B, Petropoulos I (2004) The peptide methionine sulfoxide reductases, MsrA and MsrB (hCBS-1), are downregulated during replicative senescence of human WI-38 fibroblasts. FEBS Lett 558:74–78

    Article  CAS  PubMed  Google Scholar 

  • Picot CR, Petropoulos I, Perichon M, Moreau M, Nizard C, Friguet B (2005) Overexpression of MsrA protects WI-38 SV40 human fibroblasts against H2O2-mediated oxidative stress. Free Radic Biol Med 39:1332–1341

    Article  CAS  PubMed  Google Scholar 

  • Picot CR, Moreau M, Juan M, Noblesse E, Nizard C, Petropoulos I, Friguet B (2007) Impairment of methionine sulfoxide reductase during UV irradiation and photoaging. Exp Gerontol 42:859–863

    Article  CAS  PubMed  Google Scholar 

  • Ponnappan U, Zhong M, Trebilcock GU (1999) Decreased proteasome-mediated degradation in T cells from the elderly: a role in immune senescence. Cell Immunol 192:167–174

    Article  CAS  PubMed  Google Scholar 

  • Ruan H, Tang XD, Chen ML, Joiner ML, Sun G, Brot N, Weissbach H, Heinemann SH, Iverson L, Wu CF, Hoshi T (2002) High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc Natl Acad Sci U S A 99:2748–2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmon AB, Perez VI, Bokov A, Jernigan A, Kim G, Zhao H, Levine RL, Richardson A (2009) Lack of methionine sulfoxide reductase A in mice increases sensitivity to oxidative stress but does not diminish life span. FASEB J 23:3601–3608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, Smith MA (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem 68:2092–2097

    Article  CAS  PubMed  Google Scholar 

  • Shibatani T, Ward WF (1996) Effect of age and food restriction on alkaline protease activity in rat liver. J Gerontol A Biol Sci Med Sci 51:B175–B178

    Article  CAS  PubMed  Google Scholar 

  • Shibatani T, Nazir M, Ward WF (1996) Alteration of rat liver 20S proteasome activities by age and food restriction. J Gerontol A Biol Sci Med Sci 51:B316–22

    Article  CAS  Google Scholar 

  • Shringarpure R, Davies KJ (2002) Protein turnover by the proteasome in aging and disease. Free Radic Biol Med 32:1084–1089

    Article  CAS  PubMed  Google Scholar 

  • Sitte N, Merker K, von Zglinicki T, Grune T (2000) Protein oxidation and degradation during proliferative senescence of human MRC-5 fibroblasts. Free Radic Biol Med 28:701–708

    Article  CAS  PubMed  Google Scholar 

  • Stadtman ER (2006) Protein oxidation and aging. Free Radic Res. 40:1250–1258

    Article  CAS  PubMed  Google Scholar 

  • Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218

    Article  CAS  PubMed  Google Scholar 

  • Swomley AM, Butterfield DA (2015) Oxidative stress in Alzheimer disease and mild cognitive impairment: evidence from human data provided by redox proteomics. Arch Toxicol 89:1669–1680

    Article  CAS  PubMed  Google Scholar 

  • Szweda PA, Camouse M, Lundberg KC, Oberley TD, Szweda LI (2003) Aging, lipofuscin formation, and free radical-mediated inhibition of cellular proteolytic systems. Ageing Res Rev 2:383–405

    Article  CAS  PubMed  Google Scholar 

  • Tamarit J, de Hoogh A, Obis E, Alsina D, Cabiscol E, Ros J (2012) Analysis of oxidative stress-induced protein carbonylation using fluorescent hydrazides. J Proteomics 75:3778–3788

    Article  CAS  PubMed  Google Scholar 

  • Tonoki A, Kuranaga E, Tomioka T, Hamazaki J, Murata S, Tanaka K, Miura M (2009) Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol Cell Biol 29:1095–1106

    Article  CAS  PubMed  Google Scholar 

  • Ugarte N, Petropoulos I, Friguet B (2010) Oxidized mitochondrial protein degradation and repair in aging and oxidative stress. Antioxid Redox Signal 13:539–549

    Article  CAS  PubMed  Google Scholar 

  • Vanhooren V, Navarrete Santos A, Voutetakis K, Petropoulos I, Libert C, Simm A, Gonos ES, Friguet B (2015) Protein modification and maintenance systems as biomarkers of ageing. Mech Ageing Dev 151:71–84

    Article  CAS  PubMed  Google Scholar 

  • Vernace VA, Arnaud L, Schmidt-Glenewinkel T, Figueiredo-Pereira ME (2007) Aging perturbs 26S proteasome assembly in Drosophila melanogaster. FASEB J. 21:2672–2682

    Article  CAS  PubMed  Google Scholar 

  • Vilchez D, Morantte I, Liu Z, Douglas PM, Merkwirth C, Rodrigues AP, Manning G, Dillin A (2012) RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 489:263–268

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Tsuchiyama S, Yang C, Bulteau AL, He C, Robison B, Tsuchiya M, Miller D, Briones V, Tar K, Potrero A, Friguet B, Kennedy BK, Schmidt M (2015) Proteasomes, Sir2, and Hxk2 form an interconnected aging network that impinges on the AMPK/Snf1-regulated transcriptional repressor. Mig1.PLoS Genet 11:e1004968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Friguet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Friguet, B., Baraibar, M.A. (2019). Oxidatively Modified Proteins and Maintenance Systems as Biomarkers of Aging. In: Moskalev, A. (eds) Biomarkers of Human Aging. Healthy Ageing and Longevity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-24970-0_8

Download citation

Publish with us

Policies and ethics