Skip to main content

Alteration of Groundwater Hydrochemistry Due to Its Intensive Extraction in Urban Areas from Mexico

  • Chapter
  • First Online:
Water Availability and Management in Mexico

Abstract

The intensive groundwater extraction in Mexico over the years has caused adverse effects, included groundwater level decline, subsidence, and groundwater quality modifications. This study aimed at determining the hydrochemical changes produced by intensive groundwater extraction in Mexico divided into three sectors—north, central, and south of the country. The groundwater quality deterioration due its intensive extraction can be caused by many processes such as, upwelling geothermal or/and mineralized water from deeper aquifers in response to lowering of the potentiometric surface, due to heavy pumping that favors the induction of the flow-through of faults, geological fractures, or deeper wells with a higher concentration of some elements (Fluor, Arsenic, Sodium, Potassium, Nitrates, Sulfates, Chlorides, Vanadium and Boron). Also, the intensive groundwater use favors the infiltration of organic pollutants from the sewerage and percolation of rainwater, resulting in the rapid transport of groundwater and contaminants throughout the aquifer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arcega-Cabrera F, Noreña-Barroso E, Oceguera-Vargas I (2014) Lead from hunting activities and its potential environmental threat to wildlife in a protected wetland in Yucatan, Mexico. Ecotoxicol Environ Saf 100:251–257

    CAS  Google Scholar 

  • Arcega-Cabrera F, Fargher L, Quesadas-Rojas M, Moo-Puc R, Oceguera-Vargas I, Noreña-Barroso E, Yáñez-Estrada L, Alvarado J, González L, Pérez-Herrera N, Pérez-Medina S (2018) Environmental exposure of children to toxic trace elements (Hg, Cr, As) in an urban area of Yucatan, Mexico: water, blood, and urine levels. Bull Environ Contam Toxicol 100(5):620–626

    CAS  Google Scholar 

  • Armienta MA, Segovia N (2008) Arsenic and Fluoride in the groundwater of Mexico. Environ Geochem Health 30:345–353

    CAS  Google Scholar 

  • Avilés M, Garrido SE, Esteller MV, De La Paz JS, Najera C, Cortés J (2013) Removal of groundwater arsenic using a household filter with iron spikes and stainless steel. J Environ Manag 131:103–109

    Google Scholar 

  • Bauer-Gottwein P, Gondwe N, Charvet G, Marín LE, Rebolledo-Vieyra M, Merediz-Alonso G (2011) Review: the Yucatán Peninsula karst aquifer, Mexico. Hydrogeol J 19:507–524

    Google Scholar 

  • Camacho L, Gutiérrez M, Alarcón-Herrera MT, Villalba ML, Deng S (2011) Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA. Chemosphere 83:211–225

    CAS  Google Scholar 

  • Cardona A (2007) Hydrochemistry of regional, intermediate and local flow systems as a result of the geological characteristic of the Mesa Central: Reactions, processes and pollution (Hidrogeoquímica de sistemas de flujo, regional, intermedio y local resultado del marco geológico en la Mesa Central: reacciones, procesos y contaminación). Ph.D. thesis, Universidad Nacional Autónoma de México, Mexico

    Google Scholar 

  • Cardona A, Carrillo-Rivera JJ (2006) Hydrochemistry of intermediate flow systems associated with basin fill sediments derived from rhyolitic rocks (Hidrogeoquímica de sistemas de flujo intermedio que circulan por sedimentos continentals derivados de rocas riolíticas). Ingeniería Hidráulica en México 21(3):69–86

    Google Scholar 

  • Cardona A, Carrillo-Rivera JJ, Castro-Larragoitia GJ, Graniel-Castro E (2008) Combined use of indicators to evaluate waste water contamination to local flow systems in semi-arid regions: San Luis Potosi, Mexico. Selected Papers Series of the International Association of Hydrogeologists (SPS-IAH) Groundwater flow: understanding from local to regional scales. Balkema, Lisse, pp 85–104

    Google Scholar 

  • Cardona A, Banning A, Carrillo-Rivera JJ, Aguillón-Robles A, Rüde Thomas R, Aceves de Alba J (2018) Natural controls validation for handling elevated fluoride concentrations in extraction activated Tóthian groundwater flow systems: San Luis Potosí, Mexico. Environ Earth Sci 77:121

    Google Scholar 

  • Carreón-Freyre D (2010) Propagation of fracturing related to land subsidence in the valley of Queretaro, Mexico. In: Proceedings of the 8th international symposium on land subsidence SISOLS 2010, vol 339. IAHS Publ., Queretaro, pp 149–157

    Google Scholar 

  • Carreón-Freyre D, Cerca1 M, Ochoa-González G, Teatini P, Zuñiga FR (2016) Shearing along faults and stratigraphic joints controlled by land subsidence in the Valley of Querétaro, México. Hydrogeol J. https://doi.org/10.1007/s10040-016-1384-0

    Google Scholar 

  • Carrera-Hernández JJ, Gaskin SJ (2007) The Basin of Mexico aquifer system: regional groundwater level dynamics and database development. Hydrogeol J 15:1577–1590

    Google Scholar 

  • Carrillo-Rivera JJ, Cardona A, Edmunds WE (2002) Using extraction regime and knowledge of hydrogeological conditions to control high-fluoride concentration in obtained groundwater: San Luis Potosí basin, Mexico. J Hydrol 261:24–47

    CAS  Google Scholar 

  • Carrillo-Rivera JJ, Varsányi I, Kovács L, Cardona A (2007) Tracing groundwater flow systems with hydrochemistry in contrasting geological environments. Water Air Soil Pollut 184:77–103

    CAS  Google Scholar 

  • Carrillo-Rivera JJ, Cardona A, Huizar-Alvarez R, Graniel E (2008) Response of the interaction between groundwater and other components of the environment in Mexico. Environ Geol 55(2):303. https://doi.org/10.1007/s00254-007-1005-2

    Article  Google Scholar 

  • Cebrián ME, Albores A, García-Vergas G, Del Razo LM (1994) Chronic arsenic poisoning in humans: the case of Mexico. In: Nriagu JO (ed) Arsenic in the environment Part II. Wiley, New York, pp 93–107

    Google Scholar 

  • Chaussard E, Wdowinski S, Cabral-Cano E, Amelung F (2014) Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens Environ 140:94–106

    Google Scholar 

  • Chávez A, Maya C, Gibson R, Jiménez B (2011) The removal of microorganisms and organic micropollutants from wastewater during infiltration to aquifers after irrigation of farmland in the Tula Valley, Mexico. Environ Pollut 159:1354–1362

    Google Scholar 

  • Ciruela-Ochoa FJ (2016) Effects of regional subsidence on soil properties and its implications on foundation design. The case of Mexico City. 14th BGA YGES University of Strathclyde, Glasgow

    Google Scholar 

  • CONAGUA (Comision Nacional del Agua) (2009) Determinaci on de la disponibilidad de agua en el acuífero Atemajac, estado de Jalisco. Subdirecci on General T ecnica. Gerencia de Aguas Subterr aneas. Subgerencia de Evaluaci on y Ordenamiento de Acuíferos, Mexico, D.F.

    Google Scholar 

  • CONAGUA (Comision Nacional del Agua) (2010) Determinaci on de la disponibilidad de agua en el acuífero Toluquilla, estado de Jalisco. Subdirecci on General T ecnica. Gerencia de Aguas Subterr aneas. Subgerencia de Evaluaci on y Ordenamiento de Acuíferos, Mexico, D.F.

    Google Scholar 

  • CONAGUA (Comisión Nacional del Agua) (2011) Estadísticas del agua en México, Edición 2011. Secretaría de Medio Ambiente y Recursos Naturales. México

    Google Scholar 

  • CONAGUA (2014) Estadísticas del Agua en México. Edición 2014 Mexico: Comisión Nacional del Agua. http://www.conagua.gob.mx/CONAGUA07/Publicaciones/Publicaciones/EAM2014.pdf

  • CONAGUA (2017) Estadísticas del Agua en México. Edición 2017 Mexico: Comisión Nacional del Agua. http://sina.conagua.gob.mx/publicaciones/EAM_2017.pdf

  • DOF (Diario Oficial de la Federación) (2000) Modificación de la Norma Oficial Mexicana NOM-127-SSA1–1994 Salud ambiental Agua para uso y consumo humano Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. Secretaria de Salud. Diario Oficial de la Federación (DOF) (22 de noviembre de 2000)

    Google Scholar 

  • Edda Martinez S, Escolero O, Wolf L (2011) Total urban water cycle models in semiarid environments—quantitative scenario analysis at the area of San Luis Potosi, Mexico. Water Resour Manag 25:239–263

    Google Scholar 

  • Edmunds WM, Carrillo-Rivera JJ, Cardona A (2002) Geochemical evolution of groundwater beneath Mexico City. J Hydrol 254(1):1–24

    Google Scholar 

  • Escolero OA, Marín LE, Steinich B, Pacheco J (2000) Delimitation of a hydrogeological reserve for a city within a karstic aquifer: the Merida, Yucatan example. Landscape Urban Plan 51(1):53–62

    Google Scholar 

  • Esteller MV, Andreu JM (2005) Anthropic effects on hydrochemical characteristics of the Valle de Toluca aquifer (central Mexico). Hydrogeol J 13(2):378–390

    CAS  Google Scholar 

  • Esteller MV, Díaz-Delgado C (2002) Environmental effects of aquifer overexploitation: a case study in the Highlands of Mexico. Environ Manag 29(2):266–278

    Google Scholar 

  • Esteller MV, Rodríguez R, Cardona A, Padilla-Sánchez L (2012) Evaluation of hydrochemical changes due to intensive aquifer exploitation: study cases from Mexico. Environ Monit Assess 184(9):5725–5741. https://doi.org/10.1007/s10661-011-2376-0

    Article  CAS  Google Scholar 

  • Félix-Cañedo TE, Durán-Álvarez JC, Jiménez-Cisneros B (2013) The occurrence and distribution of a group of organic micropollutants in Mexico City’s water sources. Sci Total Environ 454–455:109–118

    Google Scholar 

  • Flores-Marquez L, Jiménez SG, Martínez SR, Chávez R, Silva PD (2006) Study of geothermal water intrusion due to groundwater exploitation in the Puebla Valley aquifer system, Mexico. Hydrogeol J 14(7):1216–1230

    CAS  Google Scholar 

  • Gárfias J, Arroyo N, Aravena R (2010) Hydrochemistry and origins of mineralized waters in the Puebla aquifer system, Mexico. Environ Earth Sci 59(8):1789–1805

    Google Scholar 

  • Giácoman-Vallejos G, Lizarraga-Castro I, Ponce-Caballero C, González-Sánchez A, Hernández-Núñez E (2018) Presence of DDT and Lindane in a Karstic Groundwater Aquifer in Yucatan, Mexico. Groundw Monit Remediat 38(2):68–78

    Google Scholar 

  • Gibson R, Becerril-Bravo E, Silva-Castro V, Jiménez B (2007) Determination of acidic pharmaceuticals and potential endocrine disrupting compounds in wastewaters and spring waters by selective elution and analysis by gas chromatography-mass spectrometry. J Chromatogr A 1169:31–39

    CAS  Google Scholar 

  • Hernández-Antonio A, Mahlknecht J, Tamez-Melendez C, Ramos-Leal J, Ramírez-Orozco A, Parra R, Ornelas-Soto N, Eastoe CJ (2015) Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico). Hydrol Earth Syst Sci 19:3937–3950

    Google Scholar 

  • Hernández-Terrones L, Rebolledo-Vieyra M, Merino-Ibarra M, Soto M, Le-Cossec A, Monroy-Ríos E (2011) Groundwater pollution in a karstic region (NE Yucatan): baseline nutrient content and flux to coastal ecosystems. Water Air Soil Pollut 218:517–528

    Google Scholar 

  • Instituto Nacional Estadística Geografía e Informática (INEGI) (2010) Censo Nacional de Población y Vivienda, 2010. INEGI, México. D.F. Retrieved from: http://www.inegi.org.mx/Sistemas/temasV2/Default.aspx?s=est&c=17484. Accessed 24 Aug 2011

  • Instituto Nacional de Estadística y Geografía (INEGI) (2015) Encuesta Intercensal (2015). Retrieved from: http://www.inegi.org.mx/est/contenidos/proyectos/accesmicrodatos/encuestas/hogares/especiales/ei2015/. Accessed 5 Aug 2018

  • Instituto de Información Estadística y Geográfica del Estado de Jalisco (IIEG) (2017) Alcanza Área Metropolitana de Guadalajara los 5 millones de habitantes. Boletín USD 17.11.06

    Google Scholar 

  • Kemper K, Foster S, Garduño H, Nanni N, Tuinhof A (2003) Economic instruments for groundwater management. Using incentives to improve sustainability. Brief Note 7 World Bank Washington, D.C. EEUU, pp 1–8

    Google Scholar 

  • Leal-Bautista RM, Lenczewski M, Morgan C, Gabala A, McLain JE (2013) Assessing fecal contamination in groundwater from the Tulum region, Quintana Roo, Mexico. J Environ Prot 4:1272–1279

    CAS  Google Scholar 

  • Martín del Campo MA, Esteller MV, Expósito JL, Hirata R (2014) Impacts of urbanization on groundwater hydrodynamics and hydrochemistry of the Toluca Valley aquifer (Mexico). Environ Monit Assess 186:2979–2999

    Google Scholar 

  • Martinez S, Delgado J, Escolero O, Domínguez E, Suarez M (2010) Socio-economic development in arid zones: the influence of water availability in the San Luis Potosi Basin, Mexico. In: Fernandez-Bernal A, De La Rosa MA (eds) Arid environmental. Nova Science Publishers, New York

    Google Scholar 

  • Martínez-Revilla D, Cardona A, López Álvarez B, Núñez Hernández E, Martínez-Banda F (2006) Impact of land use on shallow groundwater quality in the basin of San Luis Potosi (Impacto del uso del suelo en la calidad del agua subterránea somera en la cuenca de San Luis Potosí). Doceavo Verano de la Ciencia de la Universidad Autónoma de San Luis Potosí y Octavo de la Región Centro, San Luis Potosí

    Google Scholar 

  • Mejía-González MA, González-Hita L, Briones-Gallardo R, Cardona-Benavides A, Soto Navarro P (2014) Mecanismos que liberan arsénico al agua subterránea de la Comarca Lagunera, estados de Coahuila y Durango, México. Tecnol Cienc Agua 5:71–82

    Google Scholar 

  • Metcalfe CD, Beddows PA, Bouchot GG, Metcalfe TL, Li H, Van Lavieren H (2011) Contaminants in the coastal karst aquifer system along the Caribbean coast of the Yucatan Peninsula, Mexico. Environ Pollut 159(4):991–997

    CAS  Google Scholar 

  • Morales-Arredondo I, Rodríguez R, Armient A, Villanueva-Estrada RE (2016) Low-temperature geothermal system in central Mexico: hydrogeochemistry and potential heat source. Geochem J 50:211–225

    CAS  Google Scholar 

  • Moran-Ramírez J, Ledesma-Ruiz R, Mahlknecht J, Ramos-Leal JA (2016) Rock-water interactions and pollution processes in the volcanic aquifer system of Guadalajara, Mexico, using inverse geochemical modeling. Appl Geochem 68:79–94

    Google Scholar 

  • Palma NA, González-Villarreal FJ, Mendoza-Mata A (2018) The development of a managed aquifer recharge project with recycled water for Chihuahua, Mexico. Sustain Water Resour Manag 4(2):371–382

    Google Scholar 

  • Parga JR, Cocke DL, Valenzuela JL, Gomes JA, Kesmezb M, Irwind G, Moreno H, Weir M (2005) Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera México. J Hazard Mater 124(1–3):247–254

    CAS  Google Scholar 

  • Polanco-Rodríguez AG, Riba López MI, Del Valls Casillas A, Araujo León JA, Datta Banik S (2018) Impact of pesticides in karst groundwater. Review of recent trends in Yucatan, Mexico. Groundw Sustain Dev 7:20–29

    Google Scholar 

  • Reyes-Gómez VM, Alarcón-Herrera MT, Gutiérrez M, Núñez López D (2013) Fluoride and arsenic in an alluvial aquifer system in Chihuahua, Mexico: contaminant levels, potential sources, and co-occurrence. Water Air Soil Pollut 224:1433

    Google Scholar 

  • Rodríguez A (2002) Simulation of the dispersion of pollutants in the atmosphere from industrial point sources (Simulación de la dispersión de contaminantes en la atmósfera de fuentes puntuales de una industria). Master’s Thesis, Universidad de Guanajuato, Mexico

    Google Scholar 

  • Rodríguez R, Ramos JR, Armienta MA (2004) Groundwater arsenic variations: the role of local geology and rainfall. Appl Geochem 19:245–250

    Google Scholar 

  • Rodríguez R, Armienta A, Mejía JA (2005) Arsenic contamination of the Salamanca Aquifer System: a risk analysis. In: Bundschub J, Batthacharyan P (eds) Natural arsenic in groundwater. Balkema, Lisse, pp 77–84

    Google Scholar 

  • Rosas I, Belmont R, Armienta A, Baez A (1999) Arsenic concentrations in water, soil, milk, and forage in Comarca Lagunera, Mexico. Water Air Soil Pollut 112:133–149

    CAS  Google Scholar 

  • Rosiles-González G, Avila-Torres G, Moreno-Valenzuela OA, Acosta-González G, Leal-Bautista RM, Grimaldo-Hernández CD, Brown JK, Chaidez-Quiroz C, Betancourt WQ, Gerba CP, Hernández-Zepeda C (2017) Occurrence of Pepper Mild Mottle Virus (PMMoV) in Groundwater from a Karst Aquifer System in the Yucatan Peninsula, Mexico. Food Environ Virol 9(4):487–497

    Google Scholar 

  • Salcedo SE, Garrido HS, Esteller MV, Martínez Morales M, Ocampo Astudillo A (2017) Hydrogeochemistry and water-rock interactions in the urban area of Puebla Valley aquifer (Mexico). J Geochem Explor 181:219–235

    Google Scholar 

  • Salcedo-Sánchez ER, Esteller MV, Garrido Hoyos SE, Martínez-Morales M (2013) Groundwater optimization model for sustainable management of the Valley of Puebla aquifer, Mexico. Environ Earth Sci 70(1):337–351

    Google Scholar 

  • Santoyo E, Ovando E, Mooser F, Plata E (2005) Síntesis Geotécnica de la Cuenca del Valle de Mexico. TGC Mexico City, p 171

    Google Scholar 

  • Tortajada C (2006) Water management in Mexico City metropolitan area. Int J Water Resour Dev 22:353–376

    Google Scholar 

  • World Bank (2009) Poverty and social impact analysis of groundwater over-exploitation in Mexico, Feb 2009. The World Bank Latin America and Caribbean Region

    Google Scholar 

Download references

Acknowledgements

Authors are very grateful to Dr. Ma. Vicenta Esteller Alberich for reviewing the English version of the paper, for her careful reading of our manuscript and her many insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofía Esperanza Garrido-Hoyos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ocampo-Astudillo, A., Garrido-Hoyos, S.E., Salcedo-Sánchez, E.R., Martínez-Morales, M. (2020). Alteration of Groundwater Hydrochemistry Due to Its Intensive Extraction in Urban Areas from Mexico. In: Otazo-Sánchez, E., Navarro-Frómeta, A., Singh, V. (eds) Water Availability and Management in Mexico. Water Science and Technology Library, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-030-24962-5_4

Download citation

Publish with us

Policies and ethics