Skip to main content

Vegetated Drainage Ditches in Mexico. A Case Study in Mazatlan, Sinaloa

  • Chapter
  • First Online:
Water Availability and Management in Mexico

Part of the book series: Water Science and Technology Library ((WSTL,volume 88))

  • 582 Accesses

Abstract

Urban and agricultural drainage ditches (DD) are important structures for the drainage of runoff. While agricultural DD remove the excess of irrigation water to lowlands areas, urban DD prevent the damage of civilian infrastructure caused by stormwater runoff. The drainage ditches in Mexico are generally unattended sites, where all type of waste is deposited. Moreover, they can be receiving bodies of clandestine domestic or industrial wastewater, which could contaminate the adjacent environment. The abandonment of urban and agricultural DD deteriorates the landscape and cause water contamination which could be derived in public health problems. This chapter presents a review of the current scenario of agricultural and urban DD in Mexico. The importance of these sites, as well as the associated environmental problems, is described. Finally, the vegetated urban and agricultural drainage ditches are presented, and their potential in the mitigation of environmental pollution and the improvement of the agricultural and urban landscape are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu Bakar AF, Yusoff I, Fatt NT, Othman F, Ashraf MA (2013) Arsenic, zinc, and aluminium removal from gold mine wastewater effluents and accumulation by submerged aquatic plants (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata). Biomed Res Int 2013:890803. https://doi.org/10.1155/2013/890803

    Article  CAS  Google Scholar 

  • Ahumada-Santos YP, Báez-Flores ME, Díaz-Camacho SP, Uribe-Beltrán MdJ, López-Angulo G, Vega-Aviña R, Chávez-Duran FA, Montes-Avila J, Carranza-Díaz O, Möder M, Kuschk P, Delgado-Vargas F (2014) Spatiotemporal distribution of bacterial contamination of agricultural and domestic wastewater discharged to a drainage channel (Sinaloa, Mexico). Mar Sci 40:277–289

    Google Scholar 

  • Amoah ID, Adegoke AA, Stenström TA (2018) Soil-transmitted helminth infections associated with wastewater and sludge reuse: a review of current evidence. Tropical Med Int Health 23(7):692–703. https://doi.org/10.1111/tmi.13076

    Article  Google Scholar 

  • Bennett ER, Moore MT, Cooper CM, Smith S Jr, Shields FD Jr, Drouillard KG, Schulz R (2005) Vegetated agricultural drainage ditches for the mitigation of pyrethroid-associated runoff. Environ Toxicol Chem 24(9):2121–2127

    Article  CAS  Google Scholar 

  • Blattel CR, Williard KW, Baer SG, Schoonover JE, Zaczek JJ (2009) Ground water nitrogen dynamics in giant cane and forest riparian buffers, vol 74

    Article  Google Scholar 

  • Bloomberg MR (2017) Nyc Green infrastructure. New York

    Google Scholar 

  • Burns CJ, McIntosh LJ, Mink PJ, Jurek AM, Li AA (2013) Pesticide exposure and Neurodevelopmental outcomes: review of the epidemiologic and animal studies. J Toxicol Environ Health. Part B, Crit Rev 16(3–4):127–283. https://doi.org/10.1080/10937404.2013.783383

    Article  CAS  Google Scholar 

  • Camacho A, Giles M,Ortegón A, Palao M, Serrano B, Velázquez O (2009) Method for the determination of coliform bacteria, fecal coliforms and Escherichia coli by the technique of dilutions in multiple tubes (Probable Number or NMP). Techniques for the microbiological analysis of food. Faculty of Chemistry, UNAM, Mexico

    Google Scholar 

  • Chin DA (2006) Water-quality engineering in natural systems. Wiley, United States

    Book  Google Scholar 

  • Diáz Delgado CD, Fall CQE, Jiménez Meleón MDC, Alberich MVE, Garrido Hoyos SE, López Vázquez CM, Garcia Pulido D (2003) Risk of waterborne diseases in rural areas. Drinking water for rural communities, reuse and advanced domestic wastewater treatments. Iberoamericana de Potabilización y Depuración del Agua, Mexico D.F., p 12

    Google Scholar 

  • Dickin SK, Schuster-Wallace CJ, Qadir M, Pizzacalla K (2016) A review of health risks and pathways for exposure to wastewater use in agriculture. Environ Health Perspect 124(7):900–909. https://doi.org/10.1289/ehp.1509995

    Article  CAS  Google Scholar 

  • Edokpayi JN, Odiyo JO, Popoola OE, Msagati TAM (2016) Determination and distribution of polycyclic aromatic hydrocarbons in rivers, sediments and wastewater effluents in Vhembe District, South Africa. Int J Environ Res Public Health 13(4):387. https://doi.org/10.3390/ijerph13040387

    Article  CAS  Google Scholar 

  • Faria NMX, Fassa AG, Meucci RD (2014) Association between pesticide exposure and suicide rates in Brazil. Neuro Toxicol 45:355–362. https://doi.org/10.1016/j.neuro.2014.05.003

    Article  CAS  Google Scholar 

  • Fernandez-González J, Miguel-Beascoechea E, Miguel-Muñoz J, Curt Fernandez de la Mora MD (2009) Macrophytes of interest in phytodepuration. In Fernandez-González J (ed) Phytodepuration manual. Filters of macrophytes in flotation. Polytechnic of Madrid, pp 91–115

    Google Scholar 

  • Flora C, Kröger R (2014) Use of vegetated drainage ditches and low-grade weirs for aquaculture effluent mitigation: I. Nutrients. Aquacult Eng 60:56–62. https://doi.org/10.1016/j.aquaeng.2014.04.006

    Article  Google Scholar 

  • Gaffield SJ, Goo RL, Richards LA, Jackson RJ (2003) Public health effects of inadequately managed stormwater runoff. Am J Public Health 93(9):1527–1533

    Article  Google Scholar 

  • Gantzer C, Maul A, Audic JM, Schwartzbrod L (1998) Detection of infectious enteroviruses, enterovirus genomes, somatic coliphages, and bacteroides fragilis phages in treated wastewater. Appl Environ Microbiol 64(11):4307–4312

    Article  CAS  Google Scholar 

  • García-Pazos J (2016) Exploratory study of the water quality in runoffs transported by the Atlantic urban drain (Mazatlan, Sinaloa) (Licenciatura). Polytechnic University of Sinaloa, Mazatlan, Sinaloa, Mexico

    Google Scholar 

  • García Dávila P, Rivera Fernández N (2017) The biological cycle of intestinal coccidia and its clinical application. J Fac Med (Mexico) 60:40–46

    Google Scholar 

  • García Hernández J, Valdés-Casillas C, Cadena-Cárdenas L, Romero-Hernández S, Silva-Mendizábal S, González-Pérez G, Leyva-García GN, Aguilera-Márquez D (2011) Artificial wetlands as a viable method for the treatment of agricultural drains. Mex J Agricult Sci 2:97–111

    Google Scholar 

  • Guentzel MN (1996) Escherichia, Klebsiella, Enterobacter, Serratia, Citrobacter y Proteus. In: Baron S (ed) Medical microbiology. Medical branch of the University of Texas, Galveston

    Google Scholar 

  • Henry JG, Heinke GW (1999). Environmental engineering. Prentice Hall

    Google Scholar 

  • Hernández-Antonio A, Hansen AM (2011) Use of pesticides in two agricultural areas of Mexico and evaluation of water and sediment contamination. Int J Environ Pollut 27:115–127

    Google Scholar 

  • Hernández Cortez C, Aguilera Arreola MG, Castro Escarpulli G (2011) Situation of gastrointestinal diseases in Mexico. Infect Dis Microbiol 31(4):137–151

    Google Scholar 

  • Herzon I, Helenius J (2008) Agricultural drainage ditches, their biological importance, and functioning. Biol Cons 141(5):1171–1183. https://doi.org/10.1016/j.biocon.2008.03.005

    Article  Google Scholar 

  • Imfeld G, Braeckevelt M, Kuschk P, Richnow HH (2009) Monitoring and assessing processes of organic chemicals removal in constructed wetlands. Chemosphere 74(3):349–362. https://doi.org/10.1016/j.chemosphere.2008.09.062

    Article  CAS  Google Scholar 

  • Jimenez-Cisneros (2005) Environmental pollution in Mexico: causes, effects, and appropriate technology. Limusa, Mexico

    Google Scholar 

  • Junaid M, Hashmi MZ, Tang Y-M, Malik RN, Pei D-S (2017) Potential health risk of heavy metals in the leather manufacturing industries in Sialkot, Pakistan. Sci Rep 7:8848. https://doi.org/10.1038/s41598-017-09075-7

    Article  CAS  Google Scholar 

  • Kadlec RH, Wallace SD (2009) Treatment wetlands. CRC Press, Boca Raton, pp 26–34

    Google Scholar 

  • Kilpatrick AM, Altizer S (2010) Disease ecology. Knowl Nature Educ 3(10):55

    Google Scholar 

  • Li F, Liu X, Zhang X, Zhao D, Liu H, Zhou C, Wang R (2017) Urban ecological infrastructure: an integrated network for ecosystem services and sustainable urban systems. J Clean Prod 163:S12–S18. https://doi.org/10.1016/j.jclepro.2016.02.079

    Article  Google Scholar 

  • Lien LTQ, Hoa NQ, Chuc NTK, Thoa NTM, Phuc HD, Diwan V, Dat NT, Tamhankar AJ, Lundborg CS (2016) Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use—a one year study from Vietnam. Int J Environ Res Public Health 13(6):588. https://doi.org/10.3390/ijerph13060588

    Article  CAS  Google Scholar 

  • López Bárcenas F (2014) The second confiscation of lands. Retrieved 30 Oct 18, from http://www.lopezbarcenas.org/tags/despojo

  • Madigan L, Martinko J, Parker J. (2003) Brock biología de los microorganismos, vol 10. Pearson Educacion

    Google Scholar 

  • Maroni M, Fanetti AC, Metruccio F (2006) Risk assessment and management of occupational exposure to pesticides in agriculture. Med Lav 97(2):430–437

    CAS  Google Scholar 

  • Mastandrea C, Chichizola C, Ludueña B, Sánchez H, Álvarez H, Gutiérrez A (2005) Polycyclic aromatic hydrocarbons. Health risks and biological markers. Latin Am Clin Biochem Act 39(1):27–36

    Google Scholar 

  • Matamoros V, Bayona JM (2006) Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands. Environ Sci Technol 40(18):5811–5816

    Article  CAS  Google Scholar 

  • Matamoros V, García J, Bayona JM (2008) Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent. Water Res 42(3):653–660. https://doi.org/10.1016/j.watres.2007.08.016

    Article  CAS  Google Scholar 

  • Menjarrez RA, de Cosfo IS (1976) Desalacion de aguas de drenes agricclas en Mexicali, B.C. Desalination 19(1):499–504. https://doi.org/10.1016/S0011-9164(00)88060-1

    Article  Google Scholar 

  • Menocal-Heredia LT, Caraballo-Sánchez YI (2014). Importancia de la vigilancia sanitaria de los parásitos en la calidad del agua, segun su uso. Revista Cubana de Higiene y Epidemiología. 52(2):196–209

    Google Scholar 

  • Moeder M, Carranza-Diaz O, Lopez-Angulo G, Vega-Avina R, Chavez-Duran FA, Jomaa S, Winkler U, Schrader S, Reemtsma T, Delgado-Vargas F (2017) Potential of vegetated ditches to manage organic pollutants derived from agricultural runoff and domestic sewage: a case study in Sinaloa (Mexico). Sci Total Environ 598:1106–1115. https://doi.org/10.1016/j.scitotenv.2017.04.149

    Article  CAS  Google Scholar 

  • National Institute of Statistic and Geography (2015) Intercensal survey 2015. Retrieved 06 Aug 2019. From http://www3.inegi.org.mx/rnm/index.php/catalog/214

  • National Water Commission (2016) Statistics on water in Mexico, 2016 edition. Mexico. Retrieved 06 Aug 2019. From http://201.116.60.25/publicaciones/eam_2016.pdf

  • Nsenga Kumwimba M, Meng F, Iseyemi O, Moore MT, Zhu B, Tao W, Liang TJ, Ilunga L (2018) Removal of non-point source pollutants from domestic sewage and agricultural runoff by vegetated drainage ditches (VDDs): design, mechanism, management strategies, and future directions. Sci Total Environ 639:742–759. https://doi.org/10.1016/j.scitotenv.2018.05.184

    Article  CAS  Google Scholar 

  • Nuñez L, Tornello C, Puentes N, Moretton J (2012) Riesgos para la salud asociados con la presencia de bacterias resistentes a los antibióticos en aguas grises. Ambiente e Agua - Revista Interdisciplinaria de Ciencias Aplicadas 7(1):235–243

    Article  Google Scholar 

  • Ort C, Lawrence MG, Rieckermann J, Joss A (2010) Sampling for pharmaceuticals and personal care products (PPCPs) and illicit drugs in wastewater systems: are your conclusions valid? A critical review. Environ Sci Technol 44(16):6024–6035. https://doi.org/10.1021/es100779n

    Article  CAS  Google Scholar 

  • Orta Arrazcaeta L (2002) Water contamination by chemical pesticides. Fitosanidad 6(3):55–62

    Google Scholar 

  • Pacheco Ávila J, Cabrera Sansores A (2003) Main sources of nitrate nitrogen in groundwater. Ingeniería 7(2):47–54

    Google Scholar 

  • Peláez D, Guzmán BL, Rodríguez J, Acero F, Nava G (2016) Presence of enteric viruses in water samples for human consumption in Colombia: challenges of supply systems. Biomedicalg 36:169–178

    Article  Google Scholar 

  • Quihui-Cota L, Morales-Figueroa GG, Javalera-Duarte A, Ponce-Martínez JA, Valbuena-Gregorio E, López-Mata MA (2017) Prevalence and associated risk factors for Giardia and Cryptosporidium infections among children of northwest Mexico: a cross-sectional study. BMC Public Health 17:852. https://doi.org/10.1186/s12889-017-4822-6

    Article  Google Scholar 

  • Rajeshkumar S, Li X (2018) Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicology Reports 5:288–295. https://doi.org/10.1016/j.toxrep.2018.01.007

    Article  CAS  Google Scholar 

  • Reddy K, Debusk WF (1984). Growth characteristics of aquatic macrophytes cultured in nutrient-enriched water: I. Water hyacinth, water lettuce, and pennywort. Econ Bot 38(2):229–239

    Article  Google Scholar 

  • Reusch TB, Dierking J, Andersson H, Bonsdorff E, Carstensen J, Casini M, Czajkowski M, Hasler B, Hinsby K, Hyytiäinen K, Johannesson K, Jomaa S, Jormalainen V, Kuosa H, Laikre L, Mackenzie B, Margonski P, Oesterwind D, Ojaveer H, Zandersen M (2017) The Baltic Sea: a time machine for the future coastal ocean. Sci Adv 4:1–16

    Google Scholar 

  • Saavedra MC, Tovar C, Betancourt WQ (2012) Enteric viruses in aquatic environments: concentration and detection methods. Interciencia 37(4):260–265

    Google Scholar 

  • Sanchez-Osorio JL, Macias-Zamora JV, Ramirez-Alvarez N, Bidleman TF (2017) Organochlorine pesticides in residential soils and sediments within two main agricultural areas of northwest Mexico: concentrations, enantiomer compositions and potential sources. Chemosphere 173:275–287. https://doi.org/10.1016/j.chemosphere.2017.01.010

    Article  CAS  Google Scholar 

  • Sánchez R (2016) Acute diarrhea disease. Med Synergy Mag 1(2):10–14

    Google Scholar 

  • Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077. https://doi.org/10.1126/science.1127291

    Article  CAS  Google Scholar 

  • Secretary of Agriculture, Livestock, Rural Development, Fisheries, and Food (2017) National Agricultural Planning 2017–2030. Mexico. Retrieved 06 Aug 2019. From https://www.gob.mx/cms/uploads/attachment/file/255627/Planeaci_n_Agr_cola_Nacional_2017-2030-_parte_uno.pdf

  • Secretary of Economy (2018) Mining. Retrieved 06 Aug 2019. From https://www.gob.mx/se/acciones-y-programas/mineria

  • Secretary of Health (2017) Gastrointestinal infections, the main cause of diarrhea in children under five [Press release]. México

    Google Scholar 

  • Secretary of Health (2018) Epidemiological bulletin national epidemiological surveillance system single information system. México

    Google Scholar 

  • Tasho RP, Cho JY (2016) Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: a review. Sci Total Environ 563–564:366–376. https://doi.org/10.1016/j.scitotenv.2016.04.140

    Article  CAS  Google Scholar 

  • Ternes T, Joss A (2006) Human pharmaceuticals, hormones and fragrances—the challenge of micropollutants in urban water management, vol 5. IWA Publishing

    Google Scholar 

  • Vermonden K, Leuven RSEW, van der Velde G, van Katwijk MM, Roelofs JGM, Jan Hendriks A (2009) Urban drainage systems: an undervalued habitat for aquatic macroinvertebrates. Biol Cons 142(5):1105–1115. https://doi.org/10.1016/j.biocon.2009.01.026

    Article  Google Scholar 

  • Von Sperling M (2007) Waste stabilisation ponds, vol 6. IWA Publishing

    Google Scholar 

  • Vymazal J, Dvořáková Březinová T (2018) Removal of nutrients, organics and suspended solids in vegetated agricultural drainage ditch. Ecol Eng 118:97–103. https://doi.org/10.1016/j.ecoleng.2018.04.013

    Article  Google Scholar 

  • Warren N, Allan IJ, Carter JE, House WA, Parker A (2003) Pesticides and other micro-organic contaminants in freshwater sedimentary environments—a review. Appl Geochem 18(2):159–194. https://doi.org/10.1016/S0883-2927(02)00159-2

    Article  CAS  Google Scholar 

  • Wilton J (2015) Mexico’s ‘worst environmental disaster in modern times.’ Retrieved 30 Oct 2018, from https://newint.org/features/web-exclusive/2015/01/08/mexico-environment-disaster

  • World Health Organization (2011) Guidelines for drinking-water quality, vol 4

    Google Scholar 

  • World Health Organization (2017) 2100 millones de personas carecen de agua potable en el hogar y más del doble no disponen de saneamiento seguro. [Press release]. Retrieved 06 Aug 2019. From http://www.who.int/es/news-room/detail/12-07-2017-2-1-billion-people-lack-safe-drinking-water-at-home-more-than-twice-as-many-lack-safe-sanitation

  • World Health Organization (2018) The consequences of environmental pollution: 1.7 million infant deaths annually, according to WHO. Retrieved 06 Aug 2019. From http://www.who.int/es/news-room/detail/06-03-2017-the-cost-of-a-polluted-environment-1-7-million-child-deaths-a-year-says-who

Download references

Acknowledgements

Otoniel Carranza-Diaz acknowledges the support of the Project PROFAPI2015/060 (Autonomous University of Sinaloa). The authors thank M.Sc. Maria del Carmen de la Cruz Otero for revising this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otoniel Carranza-Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carranza-Díaz, O., Zazueta-Ojeda, I.H. (2020). Vegetated Drainage Ditches in Mexico. A Case Study in Mazatlan, Sinaloa. In: Otazo-Sánchez, E., Navarro-Frómeta, A., Singh, V. (eds) Water Availability and Management in Mexico. Water Science and Technology Library, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-030-24962-5_21

Download citation

Publish with us

Policies and ethics