Skip to main content

The Risk of Vancomycin Resistant Enterococci Infections from Food Industry

  • Chapter
  • First Online:
Health and Safety Aspects of Food Processing Technologies

Abstract

Several works of literature research for the contribution of Antibiotic-Resistant Enterococci (ARE) and, especially Vancomycin Resistant Enterococci (VRE) which entered into the food chain has gained importance with the increasing significance of VREs in hospital infections. Various studies conducted in Europe, United States of America (USA) and the Middle East were evaluated in terms of prevalence, epidemiology and risk factors of foodborne enterococci in VRE infections. VRE epidemiology has shown some distinctions in Europe and USA. VRE was generally isolated from animals in Europe, which was connected to the extensive/massive use of “avoparcin” as a growth promoter in animal feed in the agriculture sector. Animals fed with this feed act as reservoirs of transferable vanA type resistance. On the other hand, since “avoparcin” was not used in the USA, VRE could not be isolated in animals and healthy humans. However, hospital-acquired VRE infections are more showed in the USA than in European countries. According to numerous studies, since enterococci are used as starter culture and probiotic culture, they have no relationship genetically with the strains which include vancomycin/resistant to antibiotic/or having resistance and virülence genes. In this chapter, important features of enterococci, the role of food chain for ARE especially, VRE infections in community including strategies for future solutions about the problem are summarised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarestrup FM, Ahrens P, Madsen M, Pallesen LV, Poulsen RL, Westh H (1996) Glycopeptide susceptibility among Danish enterococcus faecium and Enterococcus faecalis isolates of animal and human origin and PCR identification of genes within the VanA cluster. Antimicrob Agents Chemother 40(8):1938–1940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abeıjón MC, Medina RB, Katz MB, Silvia N, González SN (2006) Erratum: technological properties of Enterococcus faecium isolated from Ewe’s milk and cheese with importance for flavour development. Can J Microbiol 52:9–913

    Google Scholar 

  • ACNFP (1996) Report on Enterococcus faecium, strain K77D. Report, Ergon House c/o Nobel House, 17 Smith Square, London SW1 3JR, United Kingdom: MAFF Advisory Committee on Novel Foods and Processes

    Google Scholar 

  • Aktaş G, Derbentli Ş (2009) Vankomisine Dirençli Enterokokların Önemive Epidemiyolojik Özellikleri. İnfeksiyon Dergisi (Turk J Emerg Med) 23(4):201–209p

    Google Scholar 

  • Alvarez CYM, Fernandez FJ, Wacher-Rodarte C, Aguılar MB, Saınz ETR, Ponce-Alqicira E (2010) Biochemical characterization of a bacteriocin-like inhibitory substance produced by Enterococcus faecium MXVK29, isolated from Mexican traditional Sausage. J Sci Food Agric 90(14):2475–281p

    Google Scholar 

  • Askarian M, Afkhamzadeh R, Monabbati A, Daxboeck F, Assadian O (2008) Risk factors for rectal colonization with vancomycin-resistant Enterococci in Shiraz, Iran. Int J Infect Dis 12:171–175p

    PubMed  Google Scholar 

  • Atterbury RJ (2009) Bacteriophage biocontrol in animals and meat products. Microb Biotechnol 2:601–612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barakat RK, Griffiths MW, Harris LJ (2000) Isolation and characterisation of Carnobacterium, Lactococcus, and spp. from cooked, modified atmosphere packed, refrigerated, poultry meat. Int J Food Microbiol 62:83–94p

    CAS  PubMed  Google Scholar 

  • Bertrand X, Mulin B, Vıel JF, Thouverez M, Talon D (2000) Common PFGE patterns in antibiotic-resistant E. faecalis from humans and cheeses. Food Microbiol 17:543–551p

    CAS  Google Scholar 

  • Bhardwaj A, Gupta H, Kapıla S, Kaur G, Vij S, Malik LK (2010) Safety assessment and evaluation of probiotic potential of bacteriocinogenic Enterococcus faecium KH 24 strain under in vitro and in vivo conditions. Int J Food Microbiol 141:156–164

    PubMed  Google Scholar 

  • Boklund A, Alban L, Mortensen S, Houe H (2004) Biosecurity in 116 Danish fattening swineherds: descriptive results and factor analysis. Prev Vet Med 66:49–62p

    CAS  PubMed  Google Scholar 

  • Bonten MJ, Willems R, Weinsteın RA (2001) Vancomycin-resistant Enterococci: why are they here and where do they come from? Lancet Infect Dis 1:314–25p

    CAS  PubMed  Google Scholar 

  • Çakır I, Karahan AG, Çakmakçı L (2002) Probiyotikler ve etki mekanizmaları. Gıda Mühendisliği Dergisi 6(12):15–19

    Google Scholar 

  • Callaway TR, Edrington TS, Anderson RC, Harvey RB, Genovese KJ, Kennedy CN, Venn DW, Nisbet DJ (2008) Probiotics, prebiotics and competitive exclusion for prophylaxis against bacterial disease. Anim Health Res Rev 9:217–225p

    CAS  PubMed  Google Scholar 

  • Carasi P, Racedo SM, Jacquot C, Elie AM, Serradell ML, Urdaci MC (2017) Enterococcus durans EP1 a promising anti-inflammatory probiotic able to stimulate sIgA and to increase faecalibacteriumprausnitzii abundance. Front Immunol. https://doi.org/10.3389/fimmu.2017.00088

  • Castanon JI (2007) History of the use of antibiotics as growth promoters in European poultry feeds. Poult Sci 86:2466–2471

    CAS  PubMed  Google Scholar 

  • Cebrıán R, Baños A, Valdivia E, Pérez-Pulido R, Martínez-Bueno M, Maqueda M (2012) Characterization of functional, safety, and probiotic properties of Enterococcus faecalis UGRA10, a new AS-48-producer strain. Food Microbiol 30:59–67

    PubMed  Google Scholar 

  • Çetinkaya Y, Falk P, Mayhall CG (2000) Vancomycin-resistant Enterococci. Clin Microbiol Rev 13:686–707

    PubMed  PubMed Central  Google Scholar 

  • Chang S, Sievert DM, Hageman JC, Boulton ML, Tenover FC, Dovnes FP (2003) Infection with vancomycin-resistant Staphylococcus aureus containing VanA resistance gene. N Engl J Med 348:1342–1347

    PubMed  Google Scholar 

  • Chenoweth C, Schaberg D (1990) The epidemiology of Enterococci. Eur J Clin Infect Dis 9:80–89

    CAS  Google Scholar 

  • Çıtak S, Yücel N, Orhan S (2004) Antibiotic resistance and incidence of Enterococcus species in Turkish white cheese. Int J Dairy Technol 57:27–31

    Google Scholar 

  • Cocconcelli PS, Cattıvellı D, Gazzola S (2003) Gene transfer of vancomycin and tetracycline resistances among Enterococcus faecalis during cheese and sausage fermentations. Int J Food Microbiol 88:315–323

    CAS  PubMed  Google Scholar 

  • Crittenden RG, Martinez NR, Playne MJ (2003) Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria. Int J Food Microbiol 80:217–222p

    CAS  PubMed  Google Scholar 

  • De Fátima Silva Lopes M, Ribeiro T, Abrantes M, Figueiredo Marques JJ, Tenreiro R, Crespo MTB (2005) Antimicrobial resistance profiles of dairy and clinical isolates and type strains of Enterococci. Int J Food Microbiol 103:191–198

    PubMed  Google Scholar 

  • De Vuyst L, Moreno MR, Revets H (2003) Screening for enterocin and detection of hemolysin and vancomycin resistance in Enterococci of different origins. Int J Food Microbiol 84:299–318

    PubMed  Google Scholar 

  • Dellit TH, Owens RC, McGowan JE Jr, Gerding DN, Weinstein RA, Burke JP, Huskins WC, Paterson DL, Fishman NO, Carpenter CF et al (2007) Infectious diseases Society of America and the Society for healthcare epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis 44:159–177

    PubMed  Google Scholar 

  • Devriese L, Baele M, Butaye P (2006) The genus Enterococcus: taxonomy. PRO 4:163–174

    Google Scholar 

  • Drew RH (2009) Antimicrobial stewardship programs: how to start and steer a successful program. J Manag Care Pharm 15:S18–S23

    PubMed  Google Scholar 

  • Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolated. Appl Environ Microbiol 67(4):1628–1635

    CAS  PubMed  PubMed Central  Google Scholar 

  • EFSA (2012) Guidance for assessing the safety of Enterococcus faecium in animal feed. EFSA J 10:2682. https://doi.org/10.2903/j.efsa.2012.2682

    Article  CAS  Google Scholar 

  • EFSA Panel on Biological Hazards (2011) Scientific opinion on risk-based control of biogenic amine formation in fermented foods. EFSA J 9:2393

    Google Scholar 

  • EFSA Panel on Biological Hazards, Ricci A, Allende A, Bolton D, Chemaly M et al (2017) Scientific opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA. EFSA J 15:e04664

    Google Scholar 

  • El-Din BB, El-Soda M, Ezzat N (2002) Proteolytic, lipolyticand autolytic activities of Enterococci strains isolated from Egyptian dairy products. Lait 82:289–304p

    CAS  Google Scholar 

  • Erginkaya Z, Tatlı D, Yalanca I, Ünal E (2010) The determination of antibiotic resistance of Enterococcus spp. isolated from some traditional dairy and meat products (ECCO XXIX) annual meeting, Istanbul-Türkiye

    Google Scholar 

  • Franz CMAP, Holzapfel WH, Stıles ME (1999) Enterococci at the crossroads of food safety? Int J Food Microbiol 47:1–24

    CAS  PubMed  Google Scholar 

  • Franz CMAP, Muscholl-Silberhorn AB, Yousıf NMK, Vancanneyt M, Swıngs J, Holzapfel WH (2001) The incidence of virulence factors and antibiotic resistance among Enterococci isolated from food. Appl Environ Microbiol 67(9):4385–4389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franz CM, Belkum MJV, Holzapfel WH, Abrıouel H, Galvez A (2007) Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rew 31:293–310

    CAS  Google Scholar 

  • Franz CMAP, Huch M, Abrıouel H, Holzapfel W, Galvez A (2011) Enterococci as probiotics and their implications in food safety. Int J Food Microbiol Rev 151:128–140

    Google Scholar 

  • Freitas AR, Novaıs C, Ruız-Garbajosa P, Couque TM, Peıxe L (2009) Clonal expansion within clonal complex 2 and spread of vancomycin-resistant plasmids aamong different genetic lineages of Enterococcus faecalis from Portugal. J Antimicrobial Chemother 63:1104–1111

    CAS  Google Scholar 

  • Gambrotto K, Ploy M, Dupron F, Giangiobbe M, Denis F (2001) Occurrence of vancomycin-resistant enterococci in pork and poultry products from a cattle-rearing area of France. J Clin Microbiol 39:2354–2355

    Google Scholar 

  • Gelsomino R, Vancanneyt M, Codon S, Swıngs J, Cogan TM (2001) Enterococcal diversity in the environment of an Irish Cheddar-type cheesemaking factory. Int J Food Microbiol 71:177–188

    CAS  PubMed  Google Scholar 

  • Ghidan A, Dobay O, Kaszanyıtzky EJ, Samu P, Amyes SG, Nagy K, Rozgonyi F (2008) Vancomycin-resistant Enterococci (VRE) still persist in slaughtered poultry in Hungary 8 years after the ban on avoparcin. Acta Microbiol Immunol Hung 55(4):409–417

    CAS  PubMed  Google Scholar 

  • Giraffa G (2002) Enterococci from food. FEMS Microbiol Rev 26:163–171p

    CAS  PubMed  Google Scholar 

  • Giraffa G (2003) Functionality of Enterococci in dairy products. Int J Food Microbiol 88(2–3):215–222

    CAS  PubMed  Google Scholar 

  • Giraffa G, Sısto F (1997) Susceptibility to vancomycin of Enterococci isolated from dairy products. Lett Appl Microbiol 25:335–338s

    CAS  PubMed  Google Scholar 

  • Gomes BC, Esteves CT, Palazzo IC, Darini AL, Felis GE, Sechi LA, Franco B, De Martinis EC (2008) Prevalence and characterization of Enterococcus spp. isolated from Brazilian foods. Food Microbiol 25(5):668–675

    CAS  PubMed  Google Scholar 

  • Guerrero-Ramos E, Molina-González D, Blanco-Morán S, Igrejas G, Poeta P, Alonso-Calleja C, Capita R (2016) Prevalence, antimicrobial resistance, and genotypic characterization of vancomycin-resistant enterococci in meat preparations. J Food Protect 79(5):748–756

    CAS  Google Scholar 

  • Harbarth S, Cosgrove S, Carmeli Y (2002) Effects of antibiotics on nosocomial epidemiology of vancomycin-resistant enterococci. Antimicrob Agents Chemother 46:1619–1628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasman H, Villadsen AG, Aarestrup FM (2005) Diversity and stability of plasmids from glycopeptides-resistant Enterococcus faecium (GRE) isolated from pigs in Denmark. Microb Drug Resist 11:178–184p

    CAS  PubMed  Google Scholar 

  • Hauben JH (2003) The potential of vancomycin-resistant enterococci to persist in fermented and pasteurised meat products. Int J Food Microbiol 88(1):11–18p

    Google Scholar 

  • Hershberger E, Oprea SF, Donabedian SM, Perri M, Bozigar P, Bartlett P, Zervos MJ (2005) Epidemiology of antimicrobial resistance in enterococci of animal origin. J Antimicrobial Chemother 55(1):127–130

    CAS  Google Scholar 

  • Hugas M, Garigga M, Aymerich MT (2003) Functionality of Enterococci in meat products. Int J Food Microbiol 88(2–3):233

    Google Scholar 

  • Hummel AS, Hertel C, Holzapfel WH, Franz CM (2007) Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl Environ Microbiol 73(3):730–739

    CAS  PubMed  Google Scholar 

  • Jensen LB, Ahrens P, Dons L, Jones RN, Hammerum A, Aarestrup FM (1998) Molecular analysis of the Tn1546 from vancomycin resistant enterococci isolated from animals and humans. J Clin Microbiol 36:437–42p

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joerger RD (2003) Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult Sci 82:640–647

    CAS  PubMed  Google Scholar 

  • Karakaş A (2005) Isolation and identification of Enterococcus faecium from Beyaz cheese and fermented sucuks. Master of Science thesis of Institute of Science Cukurova University, Adana, Tukey

    Google Scholar 

  • Khodaee M, Nejad S (2017) Isolation and molecular identification of Enterococcus faecium strain C2 producing bacteriosins with wide antibacterial activity spectrum of local dairy products Zarand. J Innovat Food Sci Technol 9(4):Pe49–Pe58

    Google Scholar 

  • Klare I, Konstabel C, Badstubner D, Werner G, Witte W (2003) Occurrence and spread of antibiotic resistances in Enterococcus faecium. Int J Food Microbiol 88:269–290p

    CAS  PubMed  Google Scholar 

  • Leavis HL, Bonten MJM, Williems RJL (2006) Identification of high-risk Enterococcal clonal complexes: global distribution and antibiotic resistance. Curr Opin Microbiol 9:454–460

    CAS  PubMed  Google Scholar 

  • Lee CR, Cho H III, Jeong BC, Lee SH (2013) Strategies to minimize antibiotic resistance. Int J Environ Res Public Health 10:4274–4305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Linaje R, Coloma MD, Perez-Martınez G, Zunıga M (2004) Characterization of faecal Enterococci from rabits for the selection of probiotic strains. J Appl Microbiol 96:761–771

    CAS  PubMed  Google Scholar 

  • Linden PK (2007) Optimizing therapy for vancomycin-resistant enterococci (VRE). Semin Respir Crit Care Med 28:632–645

    PubMed  Google Scholar 

  • Lloyd DH (2012) Alternatives to conventional antimicrobial drugs: a review of future prospects. Vet Dermatol 23:299–304p

    PubMed  Google Scholar 

  • Lukasova J, Sustackova A (2003) Enterococci and antibiotic resistance. Acta Vet Brno 72:315–323

    Google Scholar 

  • Mannu L, Paba A, Daga E, Comunian R, Zanetti S, Dupre I, Sechi LA (2003) Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcusfaecium strains of dairy, animal and clinical origin. Int J Food Microbiol 88(2–3):291–304

    CAS  PubMed  Google Scholar 

  • Marekova M, Laukova A, De Vuyst L, Nes IF (2003) Partial characterization of bacteriocins produced enviromental strain Enterococcus faecium EK13. J Appl Microbiol 94:523–530

    CAS  PubMed  Google Scholar 

  • Maschieto A, Martınez R, Palazzo ICV, Darını ALC (2004) Antimicrobial resistance of Enterococcus spp. isolated from the intestinal tract of patients from a University Hospital in Brazil. Mem Inst Oswaldo Cruz 99:763–767

    PubMed  Google Scholar 

  • Meier F, Lacroix C, Meile L, Jans C (2018) Enterococci and pseudomonads as quality indicators in industrial production and storage of mozzarella cheese from raw cow milk. Int Dairy J 82:28–34

    CAS  Google Scholar 

  • Moehring RW, Anderson DJ (2012) Antimicrobial stewardship as part of the infection prevention effort. Curr Infect Dis Rep 14:592–600

    PubMed  Google Scholar 

  • Morrison D, Woodford N, Cookson B (1997) Enterococci as emerging pathogens of humans. J Appl Microbiol Suppl 83:89–99p

    Google Scholar 

  • Murray BE (1998) Diversity among multidrug-resistant enterococci. Emerg Infect Dis 4:37–47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murrey BE (2000) Vancomycin resistant enterococcal infections. N Engl J Med 342:710–721

    Google Scholar 

  • Novais C, Coque TM, Costa MJ, Sousa JC, Baquero F, Peixe LV (2005) High occurrence and persistence of antibiotic-resistant enterococci in poultry food samples in Portugal. J Antimicrob Chemother 56(6):1139–1143

    CAS  PubMed  Google Scholar 

  • Ogier J-C, Serror P (2008) Safety assessment of dairy microorganisms: the Enterococcus genus. Int J Food Microbiol 126:291–301

    CAS  PubMed  Google Scholar 

  • Papamanoli E, Tzanestakis N, Litopoulou-Tzanetaki E, Kotzekidou P (2003) Characterization of lactic acid bacteria isolated from a Greek dry-Sausages in respect of their technological and probiotic properties. Meat Sci 65:859–867

    CAS  PubMed  Google Scholar 

  • Paterson DL (2006) The role of antimicrobial management programs in optimizing antibiotic prescribing within hospitals. Clin Infect Dis 42:S90–S95

    PubMed  Google Scholar 

  • Pearson H (2002) ‘Superbug’ hurdles key drug barrier. Nature 418:463

    Google Scholar 

  • Potter A, Gerdts V, Littel-van den Hurk S (2008) Veterinary vaccines: alternatives to antibiotics? Anim Health Res Rev 9:187–199

    PubMed  Google Scholar 

  • Ribeiro T, Oliveira M, Fraqueza MJ, Laukova A, Elias M, Tenreiro R, Barretto AS, Semedo-Lemsaddek T (2011) Antibiotic resistance and virulence factors among enterococci isolated from Chouriço, a traditional portuguese dry fermented sausage. J Food Prot 74(3):465–469

    CAS  PubMed  Google Scholar 

  • Rinkinen M, Jalava K, Westermarck E, Salminen S, Ouwehand AC (2003) Interaction between probiotic lactic acid bacteria and canine enteric pathogens: a risk factor for intestinal Enterococcus faecium colonization. Veterin Microbiol 92:111–119

    Google Scholar 

  • Rizzotti L, La Gioira F, Dellaglio F, Torriani S (2009) Molecular diversity and transferability of the tetracycline resistance gene tet(M), carried on Tn916-1545 family transposons, in enterococci from a total food chain. Antonie Van Leeuwenhoek 96(1):43–52p

    CAS  PubMed  Google Scholar 

  • Ross RP, Morgen S, Hill C (2002) Preservation and fermentation: past, present, and future. Int J Food Microbiol 79:3–16

    CAS  PubMed  Google Scholar 

  • Sabia C, De Niederhausern S, Guerrieri E, Messi P, Anacarso I, Manicardı G, Bondi M (2008) Detection of bacteriocin production and virülence traits in vancomycin-resistant enterococci of different sources. J Appl Microbiol 104(4):970–99p

    CAS  PubMed  Google Scholar 

  • Salem-Bekhit MM, Moussa MI, Muharram MM, Alanazy FK, Hefni HM (2012) Prevalence and antimicrobial resistance patern of multidrug-esistant enterococci isolated from clinical specimens. Int J Med Microbiol 30(1):44–51

    CAS  Google Scholar 

  • Samakupa AP (2003) Hygiene indicators in a fish processing establishment. University of Namibia, Department of Natural Resource, Namibia

    Google Scholar 

  • Sanlibaba P, Senturk E (2018) Prevalence, characterization and antibiotic resistance of enterococci from traditional cheeses in Turkey. Int J Food Propert 21(1):1955–1963

    CAS  Google Scholar 

  • Sarantinopoulos P, Kalantzopoulos G, Tsakalidou E (2002) Effect of Enterococcus faecium on microbiological, physicochemical and sensory characteristic of Greek Feta cheese. Int J Food Microbiol 76:93–105

    CAS  PubMed  Google Scholar 

  • Shankar N, Baghdayan AS, Gilmore MS (2002) Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis. Nature 417:746–750

    CAS  PubMed  Google Scholar 

  • Son R, Nimita F, Rusul G, Nasreddin E, Samuel L, Nishibuchi M (1999) Isolation and molecular characterization of vancomycin-resistant Enterococcus faecium in Malaysia. Lett Appl Microbiol 29:118–122

    CAS  PubMed  Google Scholar 

  • Strompfova V, Laukova A, Ouwehand AC (2004) Selection of Enterococci for potential canine probiotic additives. Vet Microbiol 100(1–2):107–114

    PubMed  Google Scholar 

  • Talebi M, Sadeghi J, Rahimi F, Pourshafie MR (2015) Isolation and biochemical fingerprinting of vancomycin-resistant Enterococcus faecium from meat, chicken and cheese. Jundishapur J Microbiol 8:e15815p

    Google Scholar 

  • Tansuphasiri U, Khaminthakul D, Pandii W (2006) Antibiotic resistance of Enterococci isolated from frozen foods and environmental water. Southeast Asian J Trop Med Public Health 37(1):162–170

    CAS  PubMed  Google Scholar 

  • Templer SP, Rohner P, Baumgartner A (2008) Relation of Enterococcus faecalis and Enterococcus faecium isolates from foods and clinical specimens. J Food Prot 71(10):2100–2104

    CAS  PubMed  Google Scholar 

  • Tendolkar PM, Baghdayan AS, Shankar N (2003) Pathogenic enterococci: new developments in the 21st century. Cell Mol Life Sci 60:2622–2636

    CAS  PubMed  Google Scholar 

  • Tenover FC, Weigel LM, Appelbaum PC et al (2004) Vancomycin-resistant Staphylococcus aureus isolates from a patient in Pennsylvania. Antimicrob Agents Chemother 48:275–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teuber M, Perreten V, Wirsching F (1996) Antibiotikumresistente Bakterien: Eine neue Dimension in der Lebensmittelmikrobiologie. Lebensm-Technol 29:182–199

    Google Scholar 

  • Teuber M, Meile L, Schwarz F (1999) Acquired antibiotic resistance in lactic acid bacteria from food. Antonie Van Leeuwenhoek 76:115–137

    CAS  PubMed  Google Scholar 

  • Upadhyaya PMG, Ravikumar KL, Umapathy BL (2009) Review of virulence factors of enterococcus: an emerging nosocomial pathogen. Ind J Med Microbiol 27:301–305

    Google Scholar 

  • Valenzuela AS, Omar NB, Lopez RL, Abriouel H, Lopez RL, Velyovic K, Canamero MM, Topisirrovic MKL, Galvez A (2009) Virulance factors, antibiotic resistance and bacteriocins in enterococci from artisan foods of animal origin. Food Control 20(4):381–385

    CAS  Google Scholar 

  • Vehreschild MJGT, Haverkamp M, Biehl LM, Lemmen S, Fätkenheuer G (2018) Vancomycin-resistant enterococci (VRE): a reason to isolate? Infection 47(1):1–5

    Google Scholar 

  • Wegener HC, Madsen M, Nıelsen N, Aarestrup FM (1997) Isolation of vancomycin-resistant Enterococcus faecium from food. Int J Food Microbiol 35:57–66

    CAS  PubMed  Google Scholar 

  • Wegener HC, Aarestrup FM, Jensen LB, Hammerum AM, Bager F (1999) Use of antimicrobial growth promoters in food animals and Enterococcus faecium resistance to therapeutic antimicrobial drugs in Europe. Emerg Infect Dis 5(3):329–335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weigel LM, Clewell DB, Gıll SR, Clark NC, Mcdougal LK, Flanagan SE, Kolonay JF, Shetty J, Kıllgore GE, Tenover FC (2003) Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302:1569–1571

    CAS  PubMed  Google Scholar 

  • Woodford N (1998) Glycopeptide-resistant enterococci: a decade of experience. J Med Microbiol 47:849–862

    CAS  PubMed  Google Scholar 

  • Yaman F, Esendal O (2004) Balıklarda probiyotik kullanımı. Orlab on-line Mikrobiyoloji Dergisi 2(6):1–18

    Google Scholar 

  • Yurdakul E, Ergınkaya Z, Unal E (2009) The isolation of gram positive coccoids from chicken meat and the tetermination of antibiotic resistance in gram positive coccoids. CESAR: Central European Symposium on Antimicrobial Resistance, Zadar/Hırvatistan, 47

    Google Scholar 

  • Zommiti M, Cambronel M, Maillot O, Barreau M, Sebei K, Feuilloley M, Ferchichi M, Connil N (2018) Evaluation of probiotic properties and safety of Enterococcus faecium isolated from Artisanal Tunisian Meat “Dried Ossban”. Front Microbiol 9:1685

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mevhibe Terkuran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Terkuran, M., Turhan, E.Ü., Erginkaya, Z. (2019). The Risk of Vancomycin Resistant Enterococci Infections from Food Industry. In: Malik, A., Erginkaya, Z., Erten, H. (eds) Health and Safety Aspects of Food Processing Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-24903-8_18

Download citation

Publish with us

Policies and ethics