Skip to main content

Assessment of the Risk of Probiotics in Terms of the Food Safety and Human Health

  • Chapter
  • First Online:
Health and Safety Aspects of Food Processing Technologies

Abstract

Probiotics are often referred to as microorganisms (bacteria or yeasts) that generally provide health benefits. There is great interest in probiotics for various medical reasons and millions of people around the world consume probiotic microorganisms daily with the perception that it is beneficial for health. Members of the genus Lactococcus and Lactobacillus, Streptococcus, Enterococcus strains, and some other LAB strains are generally accepted as safe (GRAS) status, although they contain some opportunistic pathogens. In addition, some of the spore forming bacteria have been researched and used as probiotics. However, nowadays theoretical concerns and side effects are discussed with regard to the safety of probiotics. Systemic infections, the risk of harmful metabolic activities, risk of adjuvant side effects, immunomodulation and gene transfer risk are among the theoretical concerns discussed. The most common side effects of probiotic microorganisms include gastrointestinal disorders such as nausea, diarrhea, bloating, abdominal pain and dyspepsia. Other side effects include respiratory tract infections, abscess, allergic reactions and severe medical conditions such as sepsis, endocarditis and fungemia. The safety of probiotics is related to the potential vulnerability of the consumer or the patient, the dose of use, duration of consumption and the frequency of consumption. The significance of negative probiotic effects will be better understood by understanding of the probiotic interaction mechanisms with host and colonizing microbes. In this chapter, the evaluation of the risk associated with the consumption of probiotic products has been discussed, based on epidemiological data and infected cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aakra Å, Nyquist L, Snipen L et al (2007) Survey of genomic diversity among Enterococcus faecalis strains by microarray-based comparative genomic hybridisation. Appl Environ Microbiol 73(7):2207–2217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abriouel H, Benomar N, Molinos AC et al (2008) Comparative analysis of genetic diversity and incidence of virulence factors and antibiotic resistance among enterococcal populations from raw fruit and vegetable foods, water, soil, and clinical samples. Int J Food Microbiol 123(1-2):38–49

    CAS  PubMed  Google Scholar 

  • Adams MR, Marteau P (1995) On the safety of lactic acid bacteria from food. Int J Food Microbiol 27(2-3):263–264

    CAS  PubMed  Google Scholar 

  • Ahn C, Collins-Thompson D, Duncan C et al (1992) Mobilization and location of the genetic determinant of chloramphenicol resistance from Lactobacillus plantarum caTC2R. Plasmid 27(3):169–176

    CAS  PubMed  Google Scholar 

  • Ammor MS, Florez AB, Mayo B (2007) Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol 24(6):559–570

    CAS  PubMed  Google Scholar 

  • Antony S, Stratton CW, Dummer JS (1996) Lactobacillus bacteremia: description of the clinical course in adult patients without endocarditis. Clin Infect Dis 23(4):773–778

    CAS  PubMed  Google Scholar 

  • Asahara T, Takahashi M, Nomoto K et al (2003) Assessment of safety of lactobacillus strains based on resistance to host innate defense mechanisms. Clin Diagn Lab Immunol 10(1):169–173

    PubMed  PubMed Central  Google Scholar 

  • Bassetti S, Frei R, Zimmerli W (1998) Fungemia with Saccharomyces cerevisiae after treatment with Saccharomyces boulardii. Am J Med 105(1):71–72

    CAS  PubMed  Google Scholar 

  • Berg RD, Garlington AW (1979) Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in the gnotobiotic Mouse model. Infect Immun 23(2):403–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bongaerts G, Bakkeren J, Severijnen R et al (2000) Lactobacilli and acidosis in children with short small bowel. J Pediatr Gastroenterol Nutr 30(3):288–293

    CAS  PubMed  Google Scholar 

  • Borriello SP, Hammes WP, Holzapfel W et al (2003) Safety of probiotics that contain lactobacilli or bifidobacterial. Clin Infect Dis 36(6):775–780

    CAS  PubMed  Google Scholar 

  • Boyle RJ, Robins-Browne RM, Tang ML (2006) Probiotic use in clinical practice: what are the risks? Am J Clin Nutr 83(6):1256–1264

    CAS  PubMed  Google Scholar 

  • Bozkurt H, Aslım B (2004) İmmobilizasyonun Probiyotik Kültürlerde Kullanımı. Orlab On-Line Mikrobiyoloji Dergisi 2(7):01–14

    Google Scholar 

  • Cannon JP, Lee TA, Bolanos JT et al (2005) Pathogenic relevance of Lactobacillus: a retrospective review of over 200 cases. Eur J Clin Microbiol Infect Dis 24(1):31–40

    CAS  PubMed  Google Scholar 

  • Cassone M, Serra P, Mondello F et al (2003) Outbreak of Saccharomyces cerevisiae subtype boulardii fungemia in patients neighboring those treated with a probiotic preparation of the organism. J Clin Microbiol 41(11):5340–5343

    PubMed  PubMed Central  Google Scholar 

  • Cesaro S, Chinello P, Rossi L et al (2000) Saccharomyces cerevisiae fungemia in a neutropenic patient treated with Saccharomyces boulardii. Support Care Cancer 8(6):504–505

    CAS  PubMed  Google Scholar 

  • Ceyhan N, Alıç H (2012) Bağırsak Mikroflorası ve Probiyotikler. Türk Bilimsel Derlemeler Dergisi 5(1):107–113

    Google Scholar 

  • Ciffo F (1984) Determination of the spectrum of antibiotic resistance of the Bacillus subtilis strains of Enterogermina. Chemioterapia 3(1):45–52

    CAS  PubMed  Google Scholar 

  • Clancy R (2003) Immunobiotics and the probiotic evolution. FEMS Immunol Med Microbiol 38(1):9–12

    CAS  PubMed  Google Scholar 

  • Connolly E, Abrahamsson T, Bjorksten B (2005) Safety of D(-)-lactic acid producing bacteria in the human infant. J Pediatr Gastroenterol Nutr 41(4):489–492

    PubMed  Google Scholar 

  • Çoşkun T (2006) Pro-, Pre- ve Sinbiyotikler. Çocuk Sağlığı ve Hastalıkları Dergisi 49(2):128–148

    Google Scholar 

  • Cunningham-Rundles S, Ahrné S, Bengmark S et al (2000) Probiotics and immune response. Am J Gastroenterol 95(1):S22–S25

    CAS  PubMed  Google Scholar 

  • De Boer AS, Diderichsen B (1991) On the safety of Bacillus subtilis and B. amyloliquefaciens: a review. Appl Microbiol Biotechnol 36:1–4

    PubMed  Google Scholar 

  • De Groote MA, Frank DN, Dowell E et al (2005) Lactobacillus rhamnosus GG bacteremia associated with probiotic use in a child with short gut syndrome. Pediatr Infect Dis J 24(3):278–280

    PubMed  Google Scholar 

  • Dessart SR, Steenson LR (1991) High frequency intergeneric and intrageneric conjugal transfer of drug resistance plasmids in Leuconostoc mesenteroides ssp. cremoris. J Dairy Sci 74(9):2912–2919

    Google Scholar 

  • Dewan S, Tamang JP (2007) Dominant lactic acid bacteria and their technological properties isolated from the himalayan ethnic fermented milk products. Antonie Van Leeuwenhoek 92(3):343–352

    CAS  PubMed  Google Scholar 

  • Domann E, Hain T, Ghai R et al (2007) Comparative genomic analysis for the presence of potential enterococcal virulence factors in the probiotic Enterococcus faecalis strain Symbioflor 1. Int J Med Microbiol 297(7-8):533–539

    CAS  PubMed  Google Scholar 

  • Donohue DC, Salminen S (1996) Safety of probiotic bacteria. Asia Pac J Clin Nutr 5:25–28

    CAS  PubMed  Google Scholar 

  • Duc LH, Dong TC, Logan NA et al (2005) Cases of emesis associated with bacterial contamination of an infant breakfast cereal product. Int J Food Microbiol 102(2):245–251

    Google Scholar 

  • Duffy LC (2000) Interactions mediating bacterial translocation in the immature intestine. J Nutr 130(2):432–436

    Google Scholar 

  • Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67(4):1628–1635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebners S, Smug LN, Kneifel W et al (2014) Probiotics in dietary guidelines and clinical recommendations outside the European Union. World J Gastroenterol 20(43):16095–16100

    Google Scholar 

  • FAO/WHO (2001) Food and Agriculture Organization/World Health Organization. Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Available from http://www.fao.org/es/ESN/food/foodandfood_probio_en.stm. Accessed 1 July 2003

    Google Scholar 

  • FAO/WHO. (2002) Food and Agriculture Organization/World Health Organization. Guidelines for the evaluation of probiotics in foods, report of a joint FAO/WHO working group, London, Ontario, Canada, April 30 and May 1 2002. Available from ftp://ftp.fao.org/es/esn/food/wgreport2.pdf

    Google Scholar 

  • Franz CMAP, Muscholl-Silberhorn AB, Yousif NMK (2001) Incidence of virulence factors and antibiotic resistance among enterococci isolated from food. Appl Environ Microbiol 67(9):4385–4389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fredenucci I, Chomarat M, Boucaud C et al (1998) Saccharomyces boulardii fungemia in a patient receiving Ultra-levure therapy. Clin Infect Dis 27(1):222–223

    CAS  PubMed  Google Scholar 

  • Friedman G (2005) Probiotics, prebiotics, and commensal bacteria: perspectives and clinical applications in gastroenterology. Gastroenterol Clin North Am 34(3):13–16

    Google Scholar 

  • From C, Pukall R, Schumann P et al (2005) Toxin-producing ability among Bacillus spp. outside the Bacillus cereus group. Appl Environ Microbiol 71(3):1178–1183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gallemore GH, Mohon RT, Ferguson DA (1995) Lactobacillus fermentum endocarditis involving a native mitral valve. J Tenn Med Assoc 88(8):306–308

    CAS  PubMed  Google Scholar 

  • Gasser F (1994) Safety of lactic-acid bacteria and their occurrence in human clinical infections. Bull Inst Pasteur 92:45–67

    Google Scholar 

  • Gevers D, Danielsen M, Huys G et al (2003) Molecular characterization of tet(M) genes in Lactobacillus isolates from different types of fermented dry sausage. Appl Environ Microbiol 69(2):1270–1275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gismondo MR, Drago L, Lombardi A (1999) Review of probiotics available to modify gastrointestinal flora. Int J Antimicrob Agents 12(4):287–292

    CAS  PubMed  Google Scholar 

  • Gönülateş N (2008) Kefirin insanlar üzerindeki immünomodülatör etkilerinin araştırılması. (Doctoral dissertation, SDÜ Tıp Fakültesi)

    Google Scholar 

  • Granum PE (2002) Bacillus cereus and food poisoning. In: Berkeley R, Heyndrickx M, Logan NA, de Vos P (eds) Applications and systematics of bacillus and relatives. Blackwell Science, Oxford, pp 37–46

    Google Scholar 

  • Granum PE, Lund T (1997) Bacillus cereus and its food poisoning toxins. FEMS Microbiol Lett 157(2):223–228

    CAS  PubMed  Google Scholar 

  • Green DH, Wakeley PR, Page A et al (1999) Characterization of two Bacillus probiotics. Appl Environ Microbiol 65(9):4288–4291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guarner F, Schaafsma GJ (1998) Probiotics. Int J Food Microbiol 39(3):237–238

    CAS  PubMed  Google Scholar 

  • Guinebretiere MH, Broussolle V, Nguyen-The C (2002) Enterotoxigenic profiles of food-poisoning and food borne Bacillus cereus strains. J Clin Microbiol 40:3053–3056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gülmez M, Güven A (2002) Probiyotik prebiyotik ve sinbiyotikler. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 8:83–89

    Google Scholar 

  • Hennequin C, Kauffmann-Lacroix C, Jobert A et al (2000) Possible role of catheters in Saccharomyces boulardii fungemia. Eur J Clin Microbiol Infect Dis 19(1):16–20

    CAS  PubMed  Google Scholar 

  • Henriksson A, Borody T, Clancy R (2005) Probiotics under the regulatory microscope. Expert Opin Drug Saf 4(6):1135–1143

    PubMed  Google Scholar 

  • Herreros MA, Sandoval H, González L et al (2005) Antimicrobial activity and antibiotic resistance of lactic acid bacteria isolated from Armada cheese (a Spanish goats’ milk cheese). Food Microbiol 22(5):455–459

    CAS  Google Scholar 

  • Hong HA, Duc LH, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29(4):813–835

    CAS  PubMed  Google Scholar 

  • Huang Y, Kotula L, Adams MC (2003) The in-vivo assessment of safety and gastrointestinal survival of an orally administered novel probiotic, Propionibacterium jensenii 702, in a male Wistar rat model. Food Chem Toxicol 41(12):1781–1787

    CAS  PubMed  Google Scholar 

  • Husni RN, Gordon SM, Washington JA et al (1997) Lactobacillus bacteremia and endocarditis: review of 45 cases. Clin Infect Dis 25(5):1048–1055

    CAS  PubMed  Google Scholar 

  • Ishibashi N, Yamazaki S (2001) Probiotics and safety. Am J Clin Nutr 73(2):465–470

    Google Scholar 

  • Johnson AP (1994) The pathogenicity of enterococci. Int J Antimicrob Agents 33(6):1083–1089

    CAS  Google Scholar 

  • Kalima P, Masterton RG, Roddie PH (1996) Lactobacillus rhamnosus infection in a child following bone marrow transplant. J Infect 32(2):165–167

    CAS  PubMed  Google Scholar 

  • Kayser FH (2003) Safety aspects of enterococci from the medical point of view. Int J Food Microbiol 88(2-3):255–262

    CAS  PubMed  Google Scholar 

  • Klein G, Hallmann C, Casas IA (2000) Exclusion of vanA, vanB and vanC type glycopeptide resistance in strains of Lactobacillus reuteri and Lactobacillus rhamnosus used as probiotics by polymerase chain reaction and hybridization methods. J Appl Microbiol 89:815–824

    CAS  PubMed  Google Scholar 

  • Koehler TM, Thorne CB (1987) Bacillus subtilis (natto) plasmid pLS20 mediates interspecies plasmid transfer. J Bacteriol 169(11):5271–5278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer JM, Turnbull PCB, Munshi G et al (1982) Identification and characterization of Bacillus cereus and other Bacillus species associated with foods and food poisoning. In: Corry JEL, Roberts D, And Skinner FA (eds) Isolation and identification methods for food poisoning organisms. Academic Press, London, pp 261–286

    Google Scholar 

  • Kunz AN, Noel JM, Fairchok MP (2004) Two cases of Lactobacillus bacteremia during probiotic treatment of short gut syndrome. J Pediatr Gastroenterol Nutr 38(4):457–458

    PubMed  Google Scholar 

  • Land MH, Rouster-Stevens K, Woods CR et al (2005) Lactobacillus sepsis associated with probiotic therapy. Pediatrics 115(1):178–181

    PubMed  Google Scholar 

  • Landman D, Quale JM (1997) Management of infections due to resistant enterococci: a review of therapeutic options. J Antimicrob Chemother 40:161–170

    CAS  PubMed  Google Scholar 

  • Leclercq R (1997) Enterococci acquire new kinds of resistance. Clin Infect Dis 24(Suppl.1):80–84

    Google Scholar 

  • Lee YK, Salminen S (2009) Handbook of probiotics and prebiotics. John Wiley & Sons, New York

    Google Scholar 

  • Lepage E, Brinster S, Caroin C et al (2006) Comparative genomic hybridization analysis of Enterococcus faecalis: identification of genes absent from food strains. J Bacteriol 188(9):6858–6868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lherm T, Monet C, Nougiere B et al (2002) Seven cases of fungemia with Saccharomyces boulardii in critically ill patients. Intensive Care Med 28(6):797–801

    PubMed  Google Scholar 

  • Lin CF, Fung ZF, Wu CL et al (1996) Molecular characterization of a plasmid-borne (pTC82) chloramphenicol resistance determinant (cat-TC) from Lactobacillus reuteri G4. Plasmid 36(2):116–124

    CAS  PubMed  Google Scholar 

  • Liong MT, Shah NP (2005) Bile salt deconjugation and BSH activity of five bifidobacterial strains and their cholesterol co-precipitating properties. Food Res Int 38(2):135–142

    CAS  Google Scholar 

  • Logan NA (2004) Safety of aerobic endospore-forming bacteria. In: Ricca E, Henriques AO, Cutting SM (eds) Bacterial spore formers: probiotics and emerging applications. Horizon Bioscience, Norfolk, pp 93–106

    Google Scholar 

  • Maragkoudakis PA, Zoumpopoulou G, Miaris C et al (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int Dairy J 16(3):189–199

    CAS  Google Scholar 

  • Marteau P, Pochart P, Flourie B et al (1990) Effect of chronic ingestion of a fermented dairy product containing Lactobacillus acidophilus and Bifidobacterium bifidum on metabolic activities of the colonic flora in humans. Am J Clin Nutr 52(4):685–688

    CAS  PubMed  Google Scholar 

  • Martin-Platero AM, Maqueda M, Valdivia E et al (2009) Polyphasic study of microbial communities of two Spanish farmhouse goats’ milk cheeses from Sierra de Aracena. Food Microbiol 26(3):294–304

    CAS  PubMed  Google Scholar 

  • Mathur S, Singh R (2005) Antibiotic resistance in food lactic acid bacteria-a review. Int J Food Microbiol 105(3):281–295

    CAS  PubMed  Google Scholar 

  • Mazza P, Zani F, Martelli P (1992) Studies on the antibiotic resistance of Bacillus subtilis strains used in oral bacteriotherapy. Boll Chim Farm 131(11):401–408

    CAS  PubMed  Google Scholar 

  • McBride SM, Fischetti VA, LeBlanc DJ et al (2007) Genetic diversity among Enterococcus faecalis. PLoS One 2(7):e582

    PubMed  PubMed Central  Google Scholar 

  • McGowan-Spicer LL, Fedorka-Cray PJ, Frye JG et al (2008) Antimicrobial resistance and virulence of Enterococcus faecalis isolated from retail food. J Food Prot 71(4):760–769

    CAS  PubMed  Google Scholar 

  • McNaught CE, Woodcock NP, MacFie J et al (2002) A prospective randomised study of the probiotic Lactobacillus plantarum 299V on indices of gut barrier function in elective surgical patients. Gut 51:827–831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Metchnikoff II (2004) The prolongation of life: optimistic studies. Springer Publishing Company, New York

    Google Scholar 

  • Morrison D, Woodford N, Cookson B (1997) Enterococci as emerging pathogens of humans. J Appl Microbiol Symp Suppl 83:89–99

    Google Scholar 

  • Muñoz-Atienza E, Gómez-Sala B, Araújo C et al (2013) Antimicrobial activity, antibiotic susceptibility and virulence factors of lactic acid bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiol 13(1):15

    PubMed  PubMed Central  Google Scholar 

  • Murray BE (1990) The life and times of the Enterococcus. Clin Microbiol Rev 3(1):46–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murray PR, Baron E, Jorgenson JH et al (2003) Manual of clinical microbiology. ASM Press, Washington, pp 857–869

    Google Scholar 

  • O’Brien J, Crittenden R, Ouwehand AC et al (1999) Safety evaluation of probiotics. Trends Food Sci Technol 10:418–424

    Google Scholar 

  • Oggioni MR, Pozzi G, Valensin PE et al (1998) Recurrent septicemia in an immunocompromised patient due to probiotic strains of Bacillus subtilis. J Clin Microbiol 36(1):325–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olano A, Chua J, Schroeder S et al (2001) Weissella confusa (Basonym: Lactobacillus confusus) bacteremia: a case report. J Clin Microbiol 39(4):1604–1607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osipova IG, Sorokulova IB, Tereshkina NV et al (1998) Safety of bacteria of the genus Bacillus, forming the base of some probiotics. Zh Mikrobiol Epidemiol Immunobiol 6:68–70

    Google Scholar 

  • Otles S, Cagindi O (2003) Kefir: a probiotic dairy-composition, nutritional and therapeutic aspects. Pak J Nutr 2(2):54–59

    Google Scholar 

  • Ouoba LII, Lei V, Jensen LB (2008) Resistance of potential probiotic lactic acid bacteria and Bifidobacteria of African and European origin to nantimicrobials: determination and transferability of the resistance genes to other bacteria. Int J Food Microbiol 121(2):217–224

    CAS  PubMed  Google Scholar 

  • Ouwehand AC, Saxelin M, Salminen S (2004) Phenotypic differences between commercial Lactobacillus rhamnosus GG and L. rhamnosus strains recovered from blood. Clin Infect Dis 39(12):1858–1860

    PubMed  Google Scholar 

  • Özden A (2005) Gastrointestinal sistem ve probiyotik-prebiyotik-sinbiyotik. Güncel Gastroenteroloji 9(3):124–133

    Google Scholar 

  • Özteber M (2013) Fermente süt ürünlerinden izole edilen laktik asit bakterilerinin antibiyotik dirençliliklerinin fenotipik ve genotipik yöntemlerle belirlenmesi. Master’s thesis, Adnan Menderes Üniversitesi, Fen Bilimleri Enstitüsü

    Google Scholar 

  • Patel R, Cockerill FR, Porayko MK et al (1994) Lactobacillemia in liver transplant patients. Clin Infect Dis 18:207–212

    CAS  PubMed  Google Scholar 

  • Perapoch J, Planes AM, Querol A et al (2000) Fungemia with Saccharomyces cerevisiae in two newborns, only one of whom had been treated with ultra-levura. Eur J Clin Microbiol Infect Dis 19(6):468–470

    CAS  PubMed  Google Scholar 

  • Perdigon G, Alvarez S, Aquero G et al (1997) Interactions between lactic acid bacteria, intestinal microflora and the immune system. In: Martins MT, Zanoli Sato MI, Tiedje JM, Norton Haggler JB, Dobereiner J, Sanchez P (eds) Proceedings of the 7th International Symposium of Microbial Ecology, Santos, Brazil, pp 311–316

    Google Scholar 

  • Pérez-Pulido R, Abriouel H, Ben Omar N et al (2006) Safety and potential risks of enterococci isolated from traditional fermented capers. Food Chem Toxicol 44(12):2070–2077

    PubMed  Google Scholar 

  • Phelps RJ, McKillip JL (2002) Enterotoxin production in natural isolates of Bacillaceae outside the Bacillus cereus group. Appl Environ Microbiol 68(6):3147–3151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Przyrembel H (2001) Consideration of possible legislation within existing regulatory frameworks. Am J Clin Nutr 73(2):471–475

    Google Scholar 

  • Ranadheera CS, Evans CA, Adams MC (2014) Effect of dairy probiotic combinations on in vitro gastrointestinal tolerance, intestinal epithelial cell adhesion and cytokine secretion. J Funct Foods 8:18–25

    CAS  Google Scholar 

  • Rautio M, Jousimies-Somer H, Kauma H et al (1999) Liver abscess due to a Lactobacillus rhamnosus strain indistinguishable from L. rhamnosus strain GG. Clin Infect Dis 28(5):1159–1160

    CAS  PubMed  Google Scholar 

  • Reid G (2002) Safety of lactobacillus strains as probiotic agents. Clin Infect Dis 35(3):349–350

    PubMed  Google Scholar 

  • Richard V, Van der Auwera P, Snoeck R et al (1988) Nosocomial bacteremia caused by Bacillus species. Eur J Clin Microbiol Infect Dis 7(6):783–785

    CAS  PubMed  Google Scholar 

  • Rodriguez AV, Baigorí MD, Alvarez S et al (2001) Phosphatidylinositol-specific phospholipase C activity in Lactobacillus rhamnosus with capacity to translocate. FEMS Microbiol Lett 204(1):33–38

    CAS  PubMed  Google Scholar 

  • Rowan NJ, Deans K, Anderson JG et al (2001) Putative virulence factor expression by clinical and food isolates of Bacillus spp. after growth in reconstituted infant milk formulae. Appl Environ Microbiol 67(9):3873–3881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Garbajosa P, Bonten MJ, Robinson DA et al (2006) Multilocus sequence typing scheme for Enterococcus faecalis reveals hospital-adapted genetic complexes in a background of high rates of evolution. J Clin Microbiol 44(6):2220–2228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruseler-van Embden JG, van Lieshout LM, Gosselink MJ et al (1995) Inability of Lactobacillus casei strain GG, L. acidophilus, and Bifidobacterium bifidum to degrade intestinal mucus glycoproteins. Scand J Gastroenterol 30(7):675–680

    CAS  PubMed  Google Scholar 

  • Saarela M, Mogensen G, Fonden R (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84(3):197–215

    CAS  PubMed  Google Scholar 

  • Sağdıç O, Küçüköner E, Özçelik S (2004) Probiyotik ve Prebiyotiklerin Fonksiyonel Özellikleri, Atatürk Üniv. Ziraat Fak Dergisi 35(3-4):221–228

    Google Scholar 

  • Salminen MK (2006) Lactobacillus bacteremia, with special focus on the safety of probiotic Lactobacillus rhamnosus GG (doctoral dissertation). University of Helsinki, Helsinki

    Google Scholar 

  • Salminen S, von Wright A, Morelli L et al (1998) Demonstration of safety of probiotics – a review. Int J Food Microbiol 44(1-2):93–106

    CAS  PubMed  Google Scholar 

  • Salminen MK, Tynkkynen S, Rautelin H et al (2002) Lactobacillus bacteremia during a rapid increase in probiotic use of Lactobacillus rhamnosus GG in Finland. Clin Infect Dis 35(10):1155–1160

    PubMed  Google Scholar 

  • Salminen MK, Rautelin H, Tynkkynen S et al (2004) Lactobacillus bacteremia, clinical significance, and patient outcome, with special focus on probiotic L. rhamnosus GG. Clin Infect Dis 38(1):62–69

    PubMed  Google Scholar 

  • Salyers AA, Gupta A, Wang Y (2004) Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12(9):412–416

    CAS  PubMed  Google Scholar 

  • Sanders ME, Morelli L, Tompkins TA (2003) Sporeformers as human probiotics: bacillus, sporolactobacillus, and brevibacillus. Compr Rev Food Sci Food Saf 2(3):101–110

    CAS  PubMed  Google Scholar 

  • Saxelin M, Chuang NH, Chassy B (1996) Lactobacilli and bacteremia in southern Finland, 1989–1992. Clin Infect Dis 22(3):564–566

    CAS  PubMed  Google Scholar 

  • SCAN (2002a) Scientific Committee on Animal Nutrition. Report of the Scientific Committee on Animal Nutrition. Opinion of the Scientific Committee on Animal Nutrition on the safety of use of Bacillus species in animal nutrition. European Commission, Health & Consumer Protection Directorate-General, Brussels

    Google Scholar 

  • SCAN (2002b) Scientific Committee on Animal Nutrition. Report of the Scientific Committee on Animal Nutrition, Opinion of the SCAN on the criteria for assessing the safety of microorganisms resistant to antibiotics of human, clinical, and veterinary importance. European Commission Health & Consumer Protection Directorate-General, Brussels. http://europa.eu.int/comm/food/fs/sc/scan/out64_en.pdf. Accesses 1 July 2003

    Google Scholar 

  • Senok AC, Ismaeel AY, Botta GA (2005) Probiotics: facts and myths. Clin Microbiol Infect 11(12):958–966

    CAS  PubMed  Google Scholar 

  • Serio A, Paparella A, Chaves-López C (2007) Enterococcus populations in Pecorino Abruzzese cheese: biodiversity and safety aspects. J Food Prot 70(7):1561–1568

    CAS  PubMed  Google Scholar 

  • Shortt C (1999) The probiotic century: historical and current perspectives. Trends Food Sci Technol 10(12):411–417

    CAS  Google Scholar 

  • Shu Q, Zhou JS, Rutherfurd KJ (1999) Probiotic lactic acid bacteria (Lactobacillus acidophilus HN017, Lactobacillus rhamnosus HN001 and Bifidobacterium lactis HN019) have no adverse effects on health of mice. Int Dairy J 9(11):831–836

    Google Scholar 

  • Solheim M, Brekke MC, Snipen LG (2011) Comparative genomic analysis reveals significant enrichment of mobile genetic elements and genes encoding surface-structure proteins in hospital-associated clonal-complex 2 Enterococcus faecalis. BMC Microbiol 11(1):3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spinosa MR, Wallet F, Courcol RJ (2000) The trouble in tracing opportunistic pathogens: cholangitis due to Bacillus in a French hospital caused by a strain related to an Italian probiotic? Microb Ecol Health Dis 12(2):99–101

    Google Scholar 

  • Sullivan A, Nord CE (2006) Probiotic lactobacilli and bacteraemia in Stockholm. Scand J Infect Dis 38(5):327–331

    PubMed  Google Scholar 

  • Snydman, D. R. (2008). The safety of probiotics. Clinical infectious diseases, 46(Supplement_2), S104–S111.

    Google Scholar 

  • Tall BD (2016) We are what we eat: should food microbiology take the lead on understanding how the homeostasis of the gut microbiome influences human health and disease? IAFP Annual Meeting, Des Moines

    Google Scholar 

  • Timmerman HM, Koning CJM, Mulder L (2004) Monostrain, multistrain and multispecies probiotics - a comparison of functionality and efficacy. Int J Food Microbiol 96(3):219–233

    CAS  PubMed  Google Scholar 

  • Toprak Kavas S (2007) Probiyotik Mikroorganizmaların Gastrointestinal Sistem Uyumluluğu Ve Enterik Patojenlere Etkisi. Pamukkale Üniversitesi Tıp Fakültesi İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Anabilim Dalı, Uzmanlık Alan Tezi

    Google Scholar 

  • Tynkkynen S, Singh KV, Varmanen P (1998) Vancomycin resistance factor of Lactobacillus rhamnosus GG in relation to enterococcal vancomycin resistance (van) genes. Int J Food Microbiol 41(3):195–204

    CAS  PubMed  Google Scholar 

  • Valenzuela AS, Omar NB, Abriouel H (2008) Risk factors in enterococci isolated from foods in Morocco: determination of antimicrobial resistance and incidence of virulence traits. Food Chem Toxicol 46(8):2648–2652

    PubMed  Google Scholar 

  • Veltrop MHAM, Bancsi MJLM, Bertina RM et al (2000) Role of monocytes in experimental Staphylococcus aureus endocarditis. Infect Immun 68(8):4818–4821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vergis EN, Hayden MK, Chow JW et al (2001) Determinants of vancomycin resistance and mortality rates in enterococcal bacteremia. A prospective multicenter study. Ann Intern Med 135(7):484–492

    CAS  PubMed  Google Scholar 

  • Wassenaar TM, Klein G (2008) Safety aspects and implications of regulation of probiotic bacteria in food and food supplements. J Food Prot 71(8):1734–1741

    PubMed  Google Scholar 

  • Werner G, Coque TM, Hammerum AM et al (2008) Emergence and spread of vancomycin resistance among enterococci in Europe. Eurosurveillance 13(47):1–11

    Google Scholar 

  • Wheeler RT, Kupiec M, Magnelli P et al (2003) A Saccharomyces cerevisiae mutant with increased virulence. Proc Natl Acad Sci U S A 100(5):2766–2770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willems RJ, Homan W, Top J (2001) Variant esp gene as a marker of a distinct genetic lineage of vancomycin-resistant Enterococcus faecium spreading in hospitals. Lancet 357(9259):853–855

    CAS  PubMed  Google Scholar 

  • Wolf BW, Wheeler KB, Ataya DG (1998) Safety and tolerance of Lactobacillus reuteri supplementation to a population infected with the human immunodeficiency virus. Food Chem Toxicol 36(12):1085–1094

    CAS  PubMed  Google Scholar 

  • Yiğit T (2009) Süt ve Süt Ürünlerinden Probiyotik Bakterilerden İzolasyonu. Anadolu Üniversitesi,Yüksek Lisans Tezi, Eskişehir

    Google Scholar 

  • Yousif NM, Dawyndt P, Abriouel H (2005) Molecular characterization, technological properties and safety aspects of enterococci from ‘Hussuwa’, an African fermented sorghum product. J Appl Microbiol 98(1):216–228

    CAS  PubMed  Google Scholar 

  • Yuksekdag ZN, Aslim B (2010) Assessment of potential probiotic-and starter properties of Pediococcus spp. isolated from Turkish-type fermented sausages (sucuk). J Microbiol Biotechnol 20(1):161–168

    PubMed  Google Scholar 

  • Zhou JS, Shu Q, Ritherford KJ et al (2000a) Acute oral toxicity and bacterial translocation studies on potentially probiotic strains of lactic acid bacteria. Food Chem Toxicol 38(2-3):153–161

    CAS  PubMed  Google Scholar 

  • Zhou JS, Shu Q, Rutherfurd KJ et al (2000b) Safety assessment of potential probiotic lactic acid bacteria strains Lactobacillus rhamnosus HN001, Lb. Acidophilus HN017 and Bifidobacterium lactis HN019 in BALB/c mice. Int J Food Microbiol 56(1):87–96

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selin Kalkan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalkan, S., Erginkaya, Z., Turhan, E.Ü., Konuray, G. (2019). Assessment of the Risk of Probiotics in Terms of the Food Safety and Human Health. In: Malik, A., Erginkaya, Z., Erten, H. (eds) Health and Safety Aspects of Food Processing Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-24903-8_14

Download citation

Publish with us

Policies and ethics