Skip to main content

Introduction

  • Chapter
  • First Online:
Transaction-Level Power Modeling

Abstract

The advance in processing technologies has driven the complexity of electronic design. The shrinkage of the transistor size makes the design models sophisticated, and thus the simulation time of those models is prolonged. This advance in technology is affecting dramatically the product design cycle. On the other hand, low power consumption is a fundamental target in Integrated Circuits (IC) industry. Power consumption should be addressed in early phases of the design process to prevent long expensive iterations. Different methodologies and modeling techniques have been developed to keep the design cycle short through different variants. Transaction-Level Modeling (TLM) is one of those modeling techniques. TLM is needed for power estimation to detect any unexpected excessive power dissipation in the design at early stages. In this chapter, book outline and contributions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chandrakasan, A. P., Sheng, S., & Brodersen, R. W. (1992). Low-power CMOS digital design. IEICE Transactions on Electronics, 75(4), 371–382.

    Google Scholar 

  2. Mutoh, S. I., Douseki, T., Matsuya, Y., Aoki, T., Shigematsu, S., & Yamada, J. (1995). 1-V power supply high-speed digital circuit technology with multithreshold-voltage CMOS. IEEE Journal of Solid-State circuits, 30(8), 847–854.

    Article  Google Scholar 

  3. Gonzalez, R., Gordon, B. M., & Horowitz, M. A. (1997). Supply and threshold voltage scaling for low power CMOS. IEEE Journal of Solid-State Circuits, 32(8), 1210–1216.

    Article  Google Scholar 

  4. Borkar, S. (1999). Design challenges of technology scaling. IEEE micro, 19(4), 23–29.

    Article  Google Scholar 

  5. Accellera Systems Initiative. Transaction Level Modeling. http://www.accellera.org.

  6. Rose, A., Swan, S., Pierce, J., & Fernandez, J. M. (2005). Transaction level modeling in systemC. Open SystemC Initiative.

    Google Scholar 

  7. Accellera Systems Initiative. IEEE 1666-2011: SystemC Language Reference Manual. http://www.accellera.org.

  8. Maillet-Contoz, L., & Ghenassia, F. (2005). Transaction level modeling-An abstraction beyond RTL. Transaction level modeling with SystemC-TLM concepts and applications for embedded systems (p. 23). Berlin: Springer.

    Chapter  Google Scholar 

  9. Pasricha, S. (2002). Transaction level modeling of SoC with SystemC 2.0. In Synopsys User G roup Conference (SNUG) (vol. 3, pp. 3).

    Google Scholar 

  10. Brodersen, R., Chandrakasan, A., & Sheng, S. (1992). Low-power signal processing systems. In Workshop on VLSI Signal Processing (pp. 3–13).

    Google Scholar 

  11. Guyot, A., & Abou-Samara, S. (1998). Power consumption in digital circuits. In International Conference on ASIC, Beijing China (pp. 20–23).

    Google Scholar 

  12. Bellaouar, A., & Elmasry, M. (2012). Low-power digital VLSI design: circuits and systems. Berlin: Springer Science and Business Media.

    Google Scholar 

  13. Palnitkar, S. (2003). Verilog HDL, a guide to digital design and synthesis. Upper Saddle River: Prentice Hall Professional.

    Google Scholar 

  14. Sokolov, S. A. (2005). RTL power analysis using gate-level cell power models. Sequence Design, Inc., U.S. Patent 6,901,565.

    Google Scholar 

  15. Bombieri, N., Fummi, F., Pravadelli, G., & Marques-Silva, J. (2005). Towards equivalence checking between TLM and RTL models. In Proceedings IEEE International Conference on Formal Methods and Models for Codesign (pp. 113–122).

    Google Scholar 

  16. Ghenassia, F. (2005). Transaction-level modeling with SystemC. Dordrecht, The Netherlands: Springer.

    Book  Google Scholar 

  17. Pasricha, S., Dutt, N., & Ben-Romdhane, M. (2004). Extending the transaction level modeling approach for fast communication architecture exploration. In Proceedings of the 41st annual Design Automation Conference (pp. 113–118).

    Google Scholar 

  18. Gajski, D. D., Zhu, J., Domer, R., Gerstlauer, A., & Zhao, S. (2012). SpecC: Specification language and methodology. Berlin: Springer Science and Business Media.

    Google Scholar 

  19. Beltrame, G., Sciuto, D., & Silvano, C. (2007). Multi-accuracy power and performance transaction-level modeling. Transactions on Computer-Aided Design of Integrated Circuits and Systems, 26(10), 1830–1842.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr Baher Darwish .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Darwish, A.B., El-Moursy, M.A., Dessouky, M.A. (2020). Introduction. In: Transaction-Level Power Modeling. Springer, Cham. https://doi.org/10.1007/978-3-030-24827-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24827-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24826-0

  • Online ISBN: 978-3-030-24827-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics