Abstract
Given a set P of n points with weights (possibly negative), a set Q of m points in the plane, and a positive integer k, we consider the optimization problem of finding a subset of Q with at most k points that dominates a subset of P with maximum total weight. We say a set of points \(Q'\) dominates p if some point q of \(Q'\) satisfies \(x(p)\leqslant x(q)\) and \(y(p)\leqslant y(q)\). We present an efficient algorithm solving this problem in \(O(k(n+m)\log m)\) time and \(O(n+m)\) space. Our result implies algorithms with better time bounds for related problems, including the disjoint union of cliques problem for interval graphs (equivalently, the hitting intervals problem) and the top-k representative skyline points problem in the plane.
Keywords
- Dominance
- Disjoint cliques
- Hitting intervals
Work by Choi and Ahn was supported by the MSIT (Ministry of Science and ICT), Korea, under the SW Starlab support program (IITP-2017-0-00905) supervised by the IITP (Institute of Information & communications Technology Planning & Evaluation.). Work by Cabello was supported by the Slovenian Research Agency, program P1-0297 and projects J1-8130, J1-8155, J1-9109.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Alrifai, M., Skoutas, D., Risse, T.: Selecting skyline services for QoS-based web service composition. In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 11–20. ACM (2010)
Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)
Bringmann, K., Cabello, S., Emmerich, M.T.M.: Maximum volume subset selection for anchored boxes. In: 33rd International Symposium on Computational Geometry (SoCG 2017), vol. 77. Leibniz International Proceedings in Informatics (LIPIcs), pp. 22:1–22:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)
Bringmann, K., Friedrich, T., Klitzke, P.: Two-dimensional subset selection for hypervolume and epsilon-indicator. In: GECCO, pp. 589–596. ACM (2014)
Chrobak, M., Golin, M., Lam, T.-W., Nogneng, D.: Scheduling with gaps: new models and algorithms. In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 114–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18173-8_8
Damaschke, P.: Refined algorithms for hitting many intervals. Inf. Process. Lett. 118, 117–122 (2017)
de Berg, M., Cheong, O., van Kreveld, M.J., Overmars, M.H.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77974-2
Ertem, Z., Lykhovyd, E., Wang, Y., Butenko, S.: The maximum independent union of cliques problem: complexity and exact approaches. J. Glob. Optim. (2018)
Gavril, F.: Algorithms for maximum k-colorings and k-coverings of transitive graphs. Networks 17(4), 465–470 (1987)
Jansen, K., Scheffler, P., Woeginger, G.: The disjoint cliques problem. RAIRO Recherhe Opérationnelle 31, 45–66 (1997)
Kuhn, T., Fonseca, C.M., Paquete, L., Ruzika, S., Duarte, M.M., Figueira, J.R.: Hypervolume subset selection in two dimensions: formulations and algorithms. Evol. Comput. 24(3), 411–425 (2016)
Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: the \(k\) most representative skyline operator. In: Proceedings of the 23rd International Conference on Data Engineering, ICDE 2007, pp. 86–95 (2007)
Tao, Y., Ding, L., Lin, X., Pei, J.: Distance-based representative skyline. In: Proceedings of the 25th International Conference on Data Engineering, ICDE 2009, pp. 892–903. IEEE Computer Society (2009)
Yannakakis, M., Gavril, F.: The maximum k-colorable subgraph problem for chordal graphs. Inf. Process. Lett. 24(2), 133–137 (1987)
Yuan, L., Qin, X.L., Chang, L., Zhang, W.: Diversified top-k clique search. VLDB J. 25(2), 171–196 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Choi, J., Cabello, S., Ahn, HK. (2019). Maximizing Dominance in the Plane and Its Applications. In: Friggstad, Z., Sack, JR., Salavatipour, M. (eds) Algorithms and Data Structures. WADS 2019. Lecture Notes in Computer Science(), vol 11646. Springer, Cham. https://doi.org/10.1007/978-3-030-24766-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-24766-9_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-24765-2
Online ISBN: 978-3-030-24766-9
eBook Packages: Computer ScienceComputer Science (R0)