Skip to main content

A Robust and Efficient Cooler Design Inspired by Leaf Venation

  • Conference paper
  • First Online:
  • 1790 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11556))

Abstract

After years of evolution and natural selection, leaf venation yields to a complicated pattern to achieve better transfer efficiency together with higher structure robustness. In this paper, we use the design of a cooler as an example to explore the benefits of using such venation pattern. We first utilize a bio-inspired venation generation algorithm called space colonization to generate the venation patterns, which is used as the topology of a cooler system. Numerical simulations show that, the venation-inspired design is 10% more efficient than typical cooler in heat conduction, while is about twice more robust under physical damage. These results demonstrate that plants arrange their venation in a very efficient strategy, which can be a very promising source design for both efficiency and robustness considerations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Roth-Nebelsick, A., Uhl, D., Mosbrugger, V., Kerp, H.: Evolution and function of leaf venation architecture: a review. Ann. Bot. 87(5), 553–566 (2001). https://doi.org/10.1006/anbo.2001.1391

    Article  Google Scholar 

  2. Buckley, T.N., John, G.P., Scoffoni, C., Sack, L.: How does leaf anatomy influence water transport outside the xylem? Plant Physiol. 168(4), 1616–1635 (2015). https://doi.org/10.1104/pp.15.00731

    Article  Google Scholar 

  3. Noblin, X., Mahadevan, L., Coomaraswamy, I.A., Weitz, D.A., Holbrook, N.M., Zwieniecki, M.A.: Optimal vein density in artificial and real leaves. Proc. Nat. Acad. Sci. U.S.A. 105(27), 9140–9144 (2008). https://doi.org/10.1073/pnas.0709194105

    Article  Google Scholar 

  4. Kawai, K., Okada, N.: How are leaf mechanical properties and water-use traits coordinated by vein traits? A case study in Fagaceae. Funct. Ecol. 30(4), 527–536 (2016). https://doi.org/10.1111/1365-2435.12526

    Article  Google Scholar 

  5. Niklas, K.J.: A mechanical perspective on foliage leaf form and function. New Phytol. 143(1), 19–31 (1999). https://doi.org/10.1046/j.1469-8137.1999.00441.x

    Article  Google Scholar 

  6. Laguna, M.F., Bohn, S., Jagla, E.A.: The role of elastic stresses on leaf venation morphogenesis. PLoS Comput. Biol. 4(4) (2008). https://doi.org/10.1371/journal.pcbi.1000055

    Article  MathSciNet  Google Scholar 

  7. Jakubska-Busse, A., Janowicz, M., Ochnio, L., Jackowska-Zduniak, B.: Shapes of leaves with parallel venation. Modelling of the Epipactis sp. (Orchidaceae) leaves with the help of a system of coupled elastic beams. PeerJ 4, e2165 (2016). https://doi.org/10.7717/peerj.2165

    Article  Google Scholar 

  8. Price, C.A., Weitz, J.S.: Costs and benefits of reticulate leaf venation. BMC Plant Biol. 14(1), 234 (2014). https://doi.org/10.1186/s12870-014-0234-2

    Article  Google Scholar 

  9. Sack, L., Dietrich, E.M., Streeter, C.M., Sánchez-Gómez, D., Holbrook, N.M.: Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption. Proc. Nat. Acad. Sci. U.S.A. 105(5), 1567–1572 (2008). https://doi.org/10.1073/pnas.0709333105

    Article  Google Scholar 

  10. Guo, N., Leu, M.C., Koylu, U.O.: Bio-inspired flow field designs for polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy 39(36), 21185–21195 (2014). https://doi.org/10.1016/j.ijhydene.2014.10.069

    Article  Google Scholar 

  11. Arvay, A., French, J., Wang, J.C., Peng, X.H., Kannan, A.M.: Nature inspired flow field designs for proton exchange membrane fuel cell. Int. J. Hydrogen Energy 38(9), 3717–3726 (2013). https://doi.org/10.1016/j.ijhydene.2012.12.149

    Article  Google Scholar 

  12. Barber, R.W., Emerson, D.R.: Optimal design of microfluidic networks using biologically inspired principles. Microfluid. Nanofluid. 4(3), 179–191 (2008). https://doi.org/10.1007/s10404-007-0163-6

    Article  Google Scholar 

  13. Alston, M.E., Barber, R.: Leaf venation, as a resistor, to optimize a switchable IR absorber. Sci. Rep. 6, 31611 (2016). https://doi.org/10.1038/srep31611

    Article  Google Scholar 

  14. Sawchuk, M.G., Edgar, A., Scarpella, E.: Patterning of leaf vein networks by convergent auxin transport pathways. PLoS Genet. 9(2) (2013). https://doi.org/10.1371/journal.pgen.1003294

    Article  Google Scholar 

  15. Runions, A., Fuhrer, M., Lane, B., Federl, P., Rolland-Lagan, A.-G., Prusinkiewicz, P.: Modeling and visualization of leaf venation patterns. ACM Trans. Graph. 24(3), 702 (2005). https://doi.org/10.1145/1073204.1073251

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Kexin Jiao, Yuehui Li, Karanjodh Singh for the discussion and suggestions, and Yuexuan Yang for providing the venation photograph.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houpu Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, H., Dai, R., Marvi, H. (2019). A Robust and Efficient Cooler Design Inspired by Leaf Venation. In: Martinez-Hernandez, U., et al. Biomimetic and Biohybrid Systems. Living Machines 2019. Lecture Notes in Computer Science(), vol 11556. Springer, Cham. https://doi.org/10.1007/978-3-030-24741-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24741-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24740-9

  • Online ISBN: 978-3-030-24741-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics