Heads or Tails? Cranio-Caudal Mass Distribution for Robust Locomotion with Biorobotic Appendages Composed of 3D-Printed Soft Materials

  • Robert SiddallEmail author
  • Fabian Schwab
  • Jenny Michel
  • James Weaver
  • Ardian Jusufi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11556)


The addition of external mass onto an organism can be used to examine the salient features of inherent locomotion dynamics. In this biorobotics study general principles of systems in motion are explored experimentally to gain insight on observed biodiversity in body plans and prevalent cranio-caudal mass distributions. Head and tail mass can make up approximately 20% of total body mass in lizards. To focus on the effect of differential loading of the ‘head’ and the ‘tail’ we designed an experiment using weights of 10% total body mass connected to the front and rear at varying distances to simulate biological mass distribution. Additive manufacturing techniques with compliant materials were utilized to make the biomimetic limbs. Obstacle traversal performance was evaluated over 126 trials in a variety of Moment of Inertia (MOI) configurations, recording pitch angles. Results showed that a forward-biased MOI appears useful for regaining contact in the front wheels during obstacle negotiation, while large passive tails can have a destabilising effect in some configurations. In our robophysical model, we explore both wheeled and legged locomotion (‘whegs’), and additionally examine damping the motion of the chassis by utilizing soft non-pneumatic tires (‘tweels’) which reduce body oscillations that arise from locomotion on irregular terrain.


Bioinspired robot Soft robotics Additive manufacturing 


  1. 1.
    Ackerman, J., Seipel, J.: Energy efficiency of legged robot locomotion with elastically suspended loads. IEEE Trans. Rob. 29(2), 321–330 (2013)CrossRefGoogle Scholar
  2. 2.
    Autumn, K., et al.: Evidence for van der Waals adhesion in gecko setae. Proc. Nat. Acad. Sci. 99(19), 12252–12256 (2002)CrossRefGoogle Scholar
  3. 3.
    Ballinger, R.E., Nietfeldt, J.W., Krupa, J.J.: An experimental analysis of the role of the tail in attaining high running speed in Cnemidophorus sexlineatus (Reptilia: Squamata: Lacertilia). Herpetologica 35, 114–116 (1979)Google Scholar
  4. 4.
    Ballinger, R.E., Tinkle, D.W.: On the cost of tail regeneration to body growth in lizards. J. Herpetology 13(3), 374–375 (1979)CrossRefGoogle Scholar
  5. 5.
    Basu, C., Wilson, A.M., Hutchinson, J.R.: The locomotor kinematics and ground reaction forces of walking giraffes. J. Exp. Biol. 222(2), jeb159277 (2019)CrossRefGoogle Scholar
  6. 6.
    Brown, R.M., Gist, D.H., Taylor, D.H.: Home range ecology of an introduced population of the European wall lizard podarcis muralis (Lacertilia; Lacertidae) in Cincinnati, Ohio. Am. Midl. Nat. 133, 344–359 (1995)CrossRefGoogle Scholar
  7. 7.
    Carrier, D.R., Walter, R.M., Lee, D.V.: Influence of rotational inertia on turning performance of theropod dinosaurs: clues from humans with increased rotational inertia. J. Exp. Biol. 204(22), 3917–3926 (2001)Google Scholar
  8. 8.
    Chapple, D., Swain, R.: Effect of caudal autotomy on locomotor performance in a viviparous skink, niveoscincus metallicus. Funct. Ecol. 16(6), 817–825 (2002)CrossRefGoogle Scholar
  9. 9.
    Daniels, C.B.: Running: an escape strategy enhanced by autotomy. Herpetologica 39, 162–165 (1983)Google Scholar
  10. 10.
    Daniels, C.B., Flaherty, S.P., Simbotwe, M.P.: Tail size and effectiveness of autotomy in a lizard. J. Herpetology 20(1), 93–96 (1986)CrossRefGoogle Scholar
  11. 11.
    Dawson, T.J., Taylor, C.R.: Energetic cost of locomotion in kangaroos. Nature 246(5431), 313 (1973)CrossRefGoogle Scholar
  12. 12.
    Emmons, L.H., Gentry, A.H.: Tropical forest structure and the distribution of gliding and prehensile-tailed vertebrates. Am. Nat. 121(4), 513–524 (1983)CrossRefGoogle Scholar
  13. 13.
    Essner, R.L.: Three-dimensional launch kinematics in leaping, parachuting and gliding squirrels. J. Exp. Biol. 205(16), 2469–2477 (2002)Google Scholar
  14. 14.
    Gillis, G., Higham, T.E.: Consequences of lost endings: caudal autotomy as a lens for focusing attention on tail function during locomotion. J. Exp. Biol. 219(16), 2416–2422 (2016)CrossRefGoogle Scholar
  15. 15.
    Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)CrossRefGoogle Scholar
  16. 16.
    Ijspeert, A.J.: Biorobotics: using robots to emulate and investigate agile locomotion. Science 346(6206), 196–203 (2014)CrossRefGoogle Scholar
  17. 17.
    Jagnandan, K., Higham, T.E.: Lateral movements of a massive tail influence gecko locomotion: an integrative study comparing tail restriction and autotomy. Sci. Rep. 7(1), 10865 (2017)CrossRefGoogle Scholar
  18. 18.
    Jusufi, A., Kawano, D.T., Libby, T., Full, R.J.: Righting and turning in mid-air using appendage inertia: reptile tails, analytical models and bio-inspired robots. Bioinspiration Biomimetics 5(4), 045001 (2010)CrossRefGoogle Scholar
  19. 19.
    Jusufi, A., Goldman, D.I., Revzen, S., Full, R.J.: Active tails enhance arboreal acrobatics in geckos. Proc. Nat. Acad. Sci. 105(11), 4215–4219 (2008)CrossRefGoogle Scholar
  20. 20.
    Jusufi, A., Zeng, Y., Full, R.J., Dudley, R.: Aerial righting reflexes in flightless animals. Integr. Comp. Biol. 51(6), 937–943 (2011)CrossRefGoogle Scholar
  21. 21.
    Kram, R., Dawson, T.J.: Energetics and biomechanics of locomotion by red kangaroos (Macropus rufus). Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 120(1), 41–49 (1998)CrossRefGoogle Scholar
  22. 22.
    Li, C., Zhang, T., Goldman, D.I.: A terradynamics of legged locomotion on granular media. Science 339(6126), 1408–1412 (2013)CrossRefGoogle Scholar
  23. 23.
    Libby, T., et al.: Tail-assisted pitch control in lizards, robots and dinosaurs. Nature 481(7380), 181–184 (2012)CrossRefGoogle Scholar
  24. 24.
    Lin, Z.H., Qu, Y.F., Ji, X.: Energetic and locomotor costs of tail loss in the Chinese skink, Eumeces chinensis. Comp. Biochem. Physiol. A 143(4), 508–513 (2006)CrossRefGoogle Scholar
  25. 25.
    Martin, J., Avery, R.: Effects of tail loss on the movement patterns of the lizard, Psammodromus algirus. Funct. Ecol. 12(5), 794–802 (1998)CrossRefGoogle Scholar
  26. 26.
    Mitchell, G., Skinner, J.: How giraffe adapt to their extraordinary shape. Trans. R. Soc. S. Afr. 48(2), 207–218 (1993)CrossRefGoogle Scholar
  27. 27.
    Patel, A., Braae, M.: Rapid turning at high-speed: inspirations from the cheetah’s tail. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5506–5511 (2013)Google Scholar
  28. 28.
    Spagna, J.C., Goldman, D.I., Lin, P.C., Koditschek, D.E., Full, R.J.: Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain. Bioinspiration Biomimetics 2(1), 9–18 (2007)CrossRefGoogle Scholar
  29. 29.
    Spenko, M.J., et al.: Biologically inspired climbing with a hexapedal robot. J. Field Robot. 25(4–5), 223–242 (2008)CrossRefGoogle Scholar
  30. 30.
    Sponberg, S.: The emergent physics of animal locomotion. Phys. Today 70(9), 34–40 (2017)CrossRefGoogle Scholar
  31. 31.
    Spoor, C., Badoux, D.: Descriptive and functional morphology of the locomotory apparatus of the spotted hyaena. Anat. Anz 168, 261–266 (1989)Google Scholar
  32. 32.
    Talori, Y.S., Zhao, J.S., Liu, Y.F., Lu, W.X., Li, Z.H., O’Connor, J.K.: Identification of avian flapping motion from non-volant winged dinosaurs based on modal effective mass analysis. PLoS Comput. Biol. 15(5), e1006846 (2019)CrossRefGoogle Scholar
  33. 33.
    Warren, J.V.: The physiology of the giraffe. Sci. Am. 231(5), 96–105 (1974)CrossRefGoogle Scholar
  34. 34.
    Willey, J.S., Biknevicius, A.R., Reilly, S.M., Earls, K.D.: The tale of the tail: limb function and locomotor mechanics in alligator mississippiensis. J. Exp. Biol. 207(3), 553–563 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Robert Siddall
    • 1
    Email author
  • Fabian Schwab
    • 2
  • Jenny Michel
    • 1
    • 4
  • James Weaver
    • 2
    • 3
  • Ardian Jusufi
    • 1
  1. 1.Max Planck Institute for Intelligent SystemsStuttgartGermany
  2. 2.Wyss Institute for Biologically-Inspired EngineeringHarvard UniversityCambridgeUSA
  3. 3.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA
  4. 4.University of HohenheimStuttgartGermany

Personalised recommendations