Rose-Inspired Micro-device with Variable Stiffness for Remotely Controlled Release of Objects in Robotics

  • Isabella FiorelloEmail author
  • Fabian Meder
  • Omar Tricinci
  • Carlo Filippeschi
  • Barbara MazzolaiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11556)


In this work, we present a biomimetic device, with micro-prickle-like hooks capable of variable stiffness remotely controlled by a laser. We designed artificial prickles taking inspiration from the geometry of the natural prickles of the climbers Rosa arvensis ‘Splendens’, which has a peculiar downward orientation of the tip. We fabricated artificial arrays with micro-prickles using a combination of different microfabrication techniques, including direct laser lithography (DLL), micro-moulding of PDMS and thermoplastic polycaprolactone polymer (PCL) with incorporated rod-shaped gold nanoparticles (PCL@Au NPs). Due to the plasmonic effect, Au NPs heat upon laser irradiation and thus induce a controlled softening of the PCL polymeric matrix. Thermal characterization of the device under different laser intensities was performed using a dedicated setup and it provided suitable output for remotely controlling the device. The developed micro-device can hook and release a weight of 2 g varying the prickle stiffness by using a laser power with on-off cycles. This biomimetic approach permits to gain new insights for developing innovative intelligent systems in robotics, such as controllable adhesion-based grippers for micromanipulation.


Biomimetics Soft robotics Rose prickles Variable stiffness Direct laser lithography Thermoplastic polymer 



This work was funded by RoboCom++, the European Commission under the FLAG-ERA Joint Transnational Call (JTC) 2016, and by GrowBot, the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 824074.


  1. 1.
    Xia, Z.: Biomimetic Principles and Design of Advanced Engineering Materials. Wiley, Hoboken (2016)CrossRefGoogle Scholar
  2. 2.
    Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31(5), 287–294 (2013)CrossRefGoogle Scholar
  3. 3.
    Mazzolai, B., Margheri, L., Laschi, C.: Quantitative measurements of Octopus vulgaris arms for bioinspired soft robotics. In: Bonsignorio, F., Messina, E., del Pobil, A.P., Hallam, J. (eds.) Metrics of Sensory Motor Coordination and Integration in Robots and Animals. CSM, vol. 36, pp. 3–14. Springer, Cham (2020). Scholar
  4. 4.
    Laschi, C., Mazzolai, B., Cianchetti, M.: Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 1(1), eaah3690 (2016)CrossRefGoogle Scholar
  5. 5.
    Mazzolai, B., Beccai, L., Mattoli, V.: Plants as model in biomimetics and biorobotics: new perspectives. Front. Bioeng. Biotechnol. 2, 2 (2014)CrossRefGoogle Scholar
  6. 6.
    Ji, Z., et al.: Biomimetic surface with tunable frictional anisotropy enabled by photothermogenesis-induced supporting layer rigidity variation. Adv. Mater. Interfaces 6(2), 1801460 (2019)CrossRefGoogle Scholar
  7. 7.
    Afrisal, H., Sadati, S.H., Nanayakkara, T.: A bio-inspired electro-active Velcro mechanism using Shape Memory Alloy for wearable and stiffness controllable layers. In: 2016 IEEE International Conference on Information and Automation for Sustainability (ICIAfS), pp. 1–6. IEEE (2016)Google Scholar
  8. 8.
    Gorb, S.N.: Biological attachment devices: exploring nature’s diversity for biomimetics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 366(1870), 1557–1574 (2008)CrossRefGoogle Scholar
  9. 9.
    Gorb, S.N., Popov, V.L.: Probabilistic fasteners with parabolic elements: biological system, artificial model and theoretical considerations. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 360(1791), 211–225 (2002)CrossRefGoogle Scholar
  10. 10.
    Williams, J.A., Davies, S.G., Frazer, S.: The peeling of flexible probabilistic fasteners. Tribol. Lett. 26(3), 213–222 (2007)CrossRefGoogle Scholar
  11. 11.
    Provancher, W.R., Clark, J.E., Geisler, B., Cutkosky, M.R.: Towards penetration-based clawed climbing. In: Climbing and Walking Robots, CLAWAR 2004, pp. 961–970. Springer, Heidelberg (2005). Scholar
  12. 12.
    Birkmeyer, P., Gillies, A.G., Fearing, R.S.: CLASH: climbing vertical loose cloth. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE (2011)Google Scholar
  13. 13.
    Kim, S., Asbeck, A.T., Cutkosky, M.R., Provancher, W.R.: SpinybotII: climbing hard walls with compliant microspines. In: Proceedings of the 2005 International Conference on Advanced Robotics, ICAR 2005 (2005)Google Scholar
  14. 14.
    Jiang, H., et al.: Stochastic models of compliant spine arrays for rough surface grasping. Int. J. Robot. Res. 37(7), 669–687 (2018)CrossRefGoogle Scholar
  15. 15.
    Parness, A.: Anchoring foot mechanisms for sampling and mobility in microgravity. In: IEEE International Conference on Robotics and Automation, pp. 6596–6599 (2011)Google Scholar
  16. 16.
    Niklas, K.J., Spatz, H.C.: Plant Physics. University of Chicago Press, Chicago (2012)CrossRefGoogle Scholar
  17. 17.
    Isnard, S., Silk, W.K.: Moving with climbing plants from Charles Darwin’s time into the 21st century. Am. J. Bot. 96(7), 1205–1221 (2009)CrossRefGoogle Scholar
  18. 18.
    Isnard, S., Cobb, A.R., Holbrook, N.M., Zwieniecki, M., Dumais, J.: Tensioning the helix: a mechanism for force generation in twining plants. Proc. R. Soc. Lond. B Biol. Sci. (2009). Scholar
  19. 19.
    Melzer, B., Steinbrecher, T., Seidel, R., Kraft, O., Schwaiger, R., Speck, T.: The attachment strategy of English ivy: a complex mechanism acting on several hierarchical levels. J. R. Soc. Interface 7(50), 1383–1389 (2010)CrossRefGoogle Scholar
  20. 20.
    Rowe, N.P., Speck, T.: Stem biomechanics, strength of attachment, and developmental plasticity of vines and lianas. In: Ecology of Lianas, pp. 323–344 (2014)Google Scholar
  21. 21.
    Bauer, G., Klein, M.C., Gorb, S.N., Speck, T., Voigt, D., Gallenmüller, F.: Always on the bright side: the climbing mechanism of Galium aparine. Proc. Biol. Sci. 278(1715), 2233–2239 (2011)CrossRefGoogle Scholar
  22. 22.
    Steinbrecher, T., Beuchle, G., Melzer, B., Speck, T., Kraft, O., Schwaiger, R.: Structural development and morphology of the attachment system of Parthenocissus tricuspidata. Int. J. Plant Sci. 172(9), 1120–1129 (2011)CrossRefGoogle Scholar
  23. 23.
    Gallenmüller, F., Feus, A., Fiedler, K., Speck, T.: Rose prickles and asparagus spines-different hook structures as attachment devices in climbing plants. PLoS ONE 10(12), e0143850 (2015)CrossRefGoogle Scholar
  24. 24.
    Fiorello, I., Tricinci, O., Mishra, A.K., Tramacere, F., Filippeschi, C., Mazzolai, B.: Artificial system inspired by climbing mechanism of Galium aparine fabricated via 3D laser lithography. In: Vouloutsi, V., et al. (eds.) Living Machines 2018. LNCS (LNAI), vol. 10928, pp. 168–178. Springer, Cham (2018). Scholar
  25. 25.
    Tricinci, O., Terencio, T., Mazzolai, B., Pugno, N.M., Greco, F., Mattoli, V.: 3D micropatterned surface inspired by salvinia molesta via direct laser lithography. ACS Appl. Mater. Interfaces 7(46), 25560–25567 (2015)CrossRefGoogle Scholar
  26. 26.
    Tricinci, O., et al.: Dry adhesion of artificial gecko setae fabricated via direct laser lithography. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P.F.M.J., Prescott, T., Lepora, N. (eds.) Living Machines 2017. LNCS (LNAI), vol. 10384, pp. 631–636. Springer, Cham (2017). Scholar
  27. 27.
    Bernardeschi, I., Tricinci, O., Mattoli, V., Filippeschi, C., Mazzolai, B., Beccai, L.: Three-dimensional soft material micropatterning via direct laser lithography of flexible molds. ACS Appl. Mater. Interfaces 8(38), 25019–25023 (2016)CrossRefGoogle Scholar
  28. 28.
    Baffou, G., Quidant, R.: Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 7(2), 171–187 (2013)CrossRefGoogle Scholar
  29. 29.
    Ali, M.R., Snyder, B., El-Sayed, M.A.: Synthesis and optical properties of small Au nanorods using a seedless growth technique. Langmuir 28(25), 9807–9815 (2012)CrossRefGoogle Scholar
  30. 30.
    Belfiore, N.: Micromanipulation: a challenge for actuation. Actuators 7(4), 85 (2018)CrossRefGoogle Scholar
  31. 31.
    Corradi, P., Menciassi, A., Dario, P.: Space applications of micro-robotics: a preliminary investigation of technological challenges and scenarios. In: Proceedings of the 5th Round Table on Micro/Nano Technologies for Space, Noordwijk, The Netherlands (2005)Google Scholar
  32. 32.
    Woodruff, M.A., Hutmacher, D.W.: The return of a forgotten polymer—polycaprolactone in the 21st century. Prog. Polym. Sci. 35(10), 1217–1256 (2010)CrossRefGoogle Scholar
  33. 33.
    Kurniawan, D., Nor, F., Lee, H., Lim, J.: Elastic properties of polycaprolactone at small strains are significantly affected by strain rate and temperature. Proc. Inst. Mech. Eng. [H] 225(10), 1015–1020 (2011)CrossRefGoogle Scholar
  34. 34.
    Corbierre, M.K., et al.: Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices. J. Am. Chem. Soc. 123(42), 10411–10412 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center for Micro-BioRobotics@SSSAIstituto Italiano di TecnologiaPontederaItaly
  2. 2.The BioRobotics InstituteScuola Superiore Sant’AnnaPontederaItaly

Personalised recommendations