Skip to main content

Predatory Insects

  • 678 Accesses

Abstract

Predatory insects stand out among natural enemies for having bioecological characteristics that make them potentially important agents for the biological control of crop pests. Knowing these attributes is fundamental to promote and strengthen biological control since these organisms also suffer the effects of biotic and abiotic regulation factors. This chapter approaches the bioecological aspects related to the ability to seek and find prey in the habitat; the predator-prey interactions, such as dietary preferences, adequacy, and palatability of the prey; and the effects of variations in density of prey on the predatory potential. Topics on habitat management and the role of vegetation diversity in the strategies to increase ecological services provided by these natural enemies are also covered. Moreover, this chapter presents the results of research on predatory insects from the Neotropical region.

Keywords

  • Biological control
  • Predator-prey interactions
  • Ethology
  • Agroecosystem
  • Habitat management

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-24733-1_7
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-24733-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

References

  • Andrade DC, Romeiro AR (2009) Serviços ecossistêmicos e sua importância para o sistema econômico e o bem-estar humano. IE/UNICAMP, Campinas. (Texto para Discussão, 155)

    Google Scholar 

  • Barbosa P (1998) Conservation biological control. Academic Press, San Diego

    CrossRef  Google Scholar 

  • Barbosa LR, Carvalho CF, Souza B et al (2006) Influência da densidade de Myzus persicae (Sulzer) sobre alguns aspectos biológicos e capacidade predatória de Chrysoperla externa (Hagen). Acta Sci Agron 28(2):221–225

    Google Scholar 

  • Barbosa LR, Carvalho CF, Souza B et al (2008) Eficiência de Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae) no controle de Myzus persicae (Sulzer, 1776) (Hemiptera: Aphididae) em pimentão (Capsicum annum L.). Ciênc Agrotec 32(4):1113–1119

    CrossRef  Google Scholar 

  • Barbosa PRR, Oliveira MD, Giorgi JA et al (2014) Predatory behavior and life history of Tenuisvalvae notate (Coleoptera: Coccinellidae) under variable prey availability conditions. Fla Entomol 97:1026–1034

    CrossRef  Google Scholar 

  • Biddinger DJ, Weber DC, Hull LA (2009) Coccinellidae as predators of mites: Stethorini in biological control. Biol Control 51(2):268–283

    CrossRef  Google Scholar 

  • Cakmak I, Janssen A, Sabelis MW et al (2009) Biological control of an acarine pest by single and multiple natural enemies. Biol Control 50(1):60–65

    CrossRef  Google Scholar 

  • Canedo-Júnior EO, Santiago GS, Ribas CR et al (2018) The effect size of aphid-tending ants in an agricultural tri-trophic system. J Appl Entomol 142(3):349–358

    CrossRef  Google Scholar 

  • Carvalho CF, Souza B (2009) Métodos de criação e produção de crisopídeos. In: Bueno VHP (ed) Controle biológico: produção massal e controle de qualidade, 2nd edn. UFLA, Lavras, pp 77–115

    Google Scholar 

  • Cavalcanti MG, Vilela EF, Eiras AE et al (2000) Interação tritrófica entre Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae), Eucalyptus e lagartas de Thyrinteina arnobia (Stoll) (Lepidoptera: Geometridae): I Visitação. An Soc Entomol Bras 29(4):697–703

    CrossRef  Google Scholar 

  • Chow A, Chau A, Heinz KM (2008) Compatibility of Orius insidiosus (Hemiptera: Anthocoridae) with Amblyseius degenerans (Acari: Phytoseiidae) for control of Frankliniella occidentalis (Thysanoptera: Thripidae) on cut roses. Biol Control 44(2):259–270

    CrossRef  Google Scholar 

  • Chow A, Chau A, Heinz KM (2010) Compatibility of Amblyseius (Typhlodromips) swirskii (Athias-Henriot) (Acari: Phytoseiidae) and Orius insidiosus (Hemiptera: Anthocoridae) for biological control of Frankliniella occidentalis (Thysanoptera: Thripidae) on roses. Biol Control 53(2):188–196

    CrossRef  Google Scholar 

  • Cividanes FJ (2002) Efeitos do sistema de plantio e da consorciação soja-milho sobre artrópodes capturados no solo. Pesqui Agropecu Bras 37(1):15–23

    CrossRef  Google Scholar 

  • Cividanes FJ, Barbosa JC, Ide S et al (2009) Faunistic analysis of Carabidae and Staphylinidae (Coleoptera) in five agroecosystems in northeastern São Paulo state, Brazil. Pesqui Agropecu Bras 44(8):954–958

    CrossRef  Google Scholar 

  • Cloutier C, Johnson SG (1993) Predation by Orius tristicolor (Hemiptera: Anthocoridae) on Phytoseiulus persimilis (Acarina: Phytoseiidae): testing for compatibility between biocontrol agents. Environ Entomol 22(2):477–482

    CrossRef  Google Scholar 

  • Collins KL, Boatman ND, Wilcox A et al (2002) Influence of beetle banks on cereal aphid predation in winter wheat. Agric Ecosyst Environ 93(1/3):337–350

    CrossRef  Google Scholar 

  • Correia ET (2017) Diversidade, padrão de distribuição e sazonalidade de besouros associados ao solo em cultivo de soja e plantas herbáceas. Universidade Estadual Paulista, Tese

    Google Scholar 

  • Costa RIF, Carvalho CF, Souza B (2003) Influência da densidade de indivíduos na criação de Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae). Ciênc Agrotec:1539–1545. (edição especial)

    Google Scholar 

  • Costa JF, Matos CHC, Oliveira CRF et al (2017) Functional and numerical responses of Stethorus tridens Gordon (Coleoptera: Coccinellidae) preying on Tetranychus bastosi Tuttle, Baker & Sales (Acari: Tetranychidae) on physic nut (Jatropha curcas). Biol Control 111:1–5

    Google Scholar 

  • Costanza R, D’Arge R, Groot R et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    CAS  CrossRef  Google Scholar 

  • Crumrine PW (2010) Size-structured cannibalism between top predators promotes the survival of intermediate predators in an intraguild predation system. J North Am Benthol Soc 29(2):636–646

    CrossRef  Google Scholar 

  • Daily GC (1997) Nature’s services. Societal dependence on natural ecosystems. Island Press, Washington, DC

    Google Scholar 

  • Enkegaard A, Brodsgaard HF, Hansen DL (2001) Macrolophus caliginosus: functional response to whiteflies and preference and switching capacity between whiteflies and spider mites. Entomol Exp Appl 101(1):81–88

    CrossRef  Google Scholar 

  • Evans EW (2000) Egg production in response to combined alternative foods by the predator Coccinella transversalis. Entomol Exp Appl 94(2):141–147

    CrossRef  Google Scholar 

  • Evans EW (2009) Lady beetles as predators of insects other than Hemiptera. Biol Control 51(2):255–267

    CrossRef  Google Scholar 

  • Evans EW, Toler TR (2007) Aggregation of polyphagous predators in response to multiple prey: ladybirds (Coleoptera: Coccinellidae) foraging in alfalfa. Popul Ecol 49(1):29–36

    CrossRef  Google Scholar 

  • Figueira LK, Toscano LC, Lara FM et al (2003) Aspectos biológicos de Hippodamia convergens e Cycloneda sanguinea (Coleoptera: Coccinellidae) sobre Bemisia tabaci biótipo B (Hemiptera: Aleyrodidae). Bol San Veg Plagas 29:3–7

    Google Scholar 

  • Finke D, Snyder WE (2010) Conserving the benefits of predator biodiversity. Biol Conserv 143(10):2260–2269

    CrossRef  Google Scholar 

  • Fonseca AR, Carvalho CF, Souza B (2000) Resposta funcional de Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) alimentada com Schizaphis graminum (Rondani) (Hemiptera: Aphididae). An Soc Entomol Bras 292:309–317

    CrossRef  Google Scholar 

  • Freitas S (2002) O uso de crisopídeos no controle biológico de pragas. In: Parra JRP, Botelho PSM, Corrêa-Ferreira BS et al (eds) Controle biológico no Brasil: parasitóides e predadores. Manole, São Paulo, pp 209–224

    Google Scholar 

  • Gamboa S, Souza B, Morales R (2016) Actividad depredadora de Chrysoperla externa (Neuroptera: Chrysopidae) sobre Macrosiphum euphorbiae (Hemiptera: Aphididae) en cultivo de Rosa sp. Rev Colomb Entomol 42(1):54–58

    CrossRef  Google Scholar 

  • Gitirana Neto J, Carvalho CF, Souza B et al (2001) Flutuação populacional de espécies de Ceraeochrysa Adams, 1982 (Neuroptera: Chrysopidae) em citros, na região de Lavras-MG. Ciênc Agrotec 25(3):550–559

    Google Scholar 

  • Gontijo PC, Moscardini VF, Michaud JP et al (2014) Non-target effects of chlorantraniliprole and thiamethoxam on Chrysoperla carnea when employed as sunflower seed treatments. J Pest Sci 87(4):711–719

    CrossRef  Google Scholar 

  • Groot R, Wilson M, Boumans R (2002) A typology for the classification description and valuation of ecosystem functions, goods and services. Ecol Econ 41(3):393–408

    CrossRef  Google Scholar 

  • Hodek I, Honek A (1996) Ecology of coccinellidae. Kluwer Academic, London

    CrossRef  Google Scholar 

  • Hodek I, Honek A (2009) Scale insects, mealybugs, whiteflies and psyllids (Hemiptera, Sternorrhyncha) as prey of ladybirds. Biol Control 51(2):232–243

    CrossRef  Google Scholar 

  • Hodek I, Van Emden HF, Honek A (2012) Ecology and behaviour of the ladybird beetles (Coccinellidae). Wiley-Blackwell, Chichester

    CrossRef  Google Scholar 

  • Hogg BN, Bugg RL, Daane KM (2011) Attractiveness of common insectary and harvestable floral resources to beneficial insects. Biol Control 56(1):76–84

    CrossRef  Google Scholar 

  • Honek A (2012) Distribution and habitats. In: Hodek I, Van Emden HF, Honek A (eds) Ecology and behaviour of the ladybird beetles (Coccinellidae). Wiley-Blackwell, Chichester, pp 110–140

    CrossRef  Google Scholar 

  • Janssen A, Sabelis MW, Magalhães S et al (2007) Habitat structure affects intraguild predation. Ecology 88(11):2713–2719

    PubMed  CrossRef  Google Scholar 

  • Kairo MTK, Paraiso O, Gautam R et al (2013) Cryptolaemus montrouzieri (Mulsant) (Coccinellidae: Scymninae): a review of biology, ecology, and use in biological control with particular reference to potential impact on non-target organisms. CAB Rev 8:1–20

    CrossRef  Google Scholar 

  • Koch RL (2003) The multicolored Asian lady beetle, Harmonia axyridis: a review of its biology, uses in biological control, and non-target impacts. J Insect Sci 3:1–16

    CrossRef  Google Scholar 

  • Lazzerini G, Camera A, Benedettelli S et al (2007) The role of field margins in agro-biodiversity management at the farm level. Ital J Agron 2(2):127–134

    CrossRef  Google Scholar 

  • Lee JC, Landis DA (2002) Non-crop habitat management for carabid beetle. In: Holland JM (ed) The agroecology of carabid beetles. Intercept, Andover, pp 279–303

    Google Scholar 

  • Lima SL (1998) Nonlethal effects in the ecology of predator-prey interactions. Bioscience 48(1):25–34

    CrossRef  Google Scholar 

  • Lixa AT, Campos JM, Resende ALS et al (2010) Diversidade de Coccinellidae (Coleoptera) em plantas aromáticas (Apiaceae) como sítios de sobrevivência e reprodução em sistema agroecológico. Neotrop Entomol 39(3):354–359

    PubMed  CrossRef  Google Scholar 

  • Lövei GL, Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu Rev Entomol 41(1):231–256

    PubMed  CrossRef  Google Scholar 

  • Lundgren JG (2009) Nutritional aspects of non-prey foods in the life histories of predaceous Coccinellidae. Biol Control 51(2):294–305

    CrossRef  Google Scholar 

  • Maffei ME (2010) Sites of synthesis, biochemistry and functional role of plant volatiles. S Afr J Bot 76(4):612–631

    CAS  CrossRef  Google Scholar 

  • Martins CBC, Almeida LM, Zonta-de-Carvalho R et al (2009a) Harmonia axyridis: a threat to Brazilian Coccinellidae? Rev Bras Entomol 53(4):663–671

    CrossRef  Google Scholar 

  • Martins ICF, Cividanes FJ, Augusto T et al (2009b) Avaliação de área de refúgio para manipular populações de Carabidae (Coleoptera). Rev Bras Agroecol 4(2):1479–1483

    Google Scholar 

  • Medeiros MA, Sujii ER, Morais HC (2009) Efeito da diversificação de plantas na abundância da traça-do-tomateiro e predadores em dois sistemas de cultivo. Hortic Bras 27(3):300–306

    CrossRef  Google Scholar 

  • Messelink GJ, Sabelis MW, Janssen A (2012) Generalist predators, food web complexities and biological pest control in greenhouse crops. In: Larramendy ML, Soloneski S (eds) Integrated pest management and pest control: current and future tactics. InTech, Rijeka, pp 191–214

    Google Scholar 

  • Messelink GJ, Bloemhard CMJ, Vellekoop R (2013) Biological control of aphids in the presence of thrips and their enemies. Biol Control 58(1):45–55

    Google Scholar 

  • Michaud JP, Grant AK (2005) Suitability of pollen resources for the development and reproduction of Coleomegilla maculata (Coleoptera: Coccinellidae) under simulated drought conditions. Biol Control 32:363–370

    CrossRef  Google Scholar 

  • Milléo J, Souza JMT, Barbola IF et al (2008) Harmonia axyridis em árvores frutíferas e impacto sobre outros coccinelídeos predadores. Pesqui Agropecu Bras 43(4):537–540

    CrossRef  Google Scholar 

  • Mirande L, Desneux N, Haramboure M et al (2015) Intraguild predation between an exotic and a native coccinellid in Argentina: the role of prey density. J Pest Sci 88(1):155–162

    CrossRef  Google Scholar 

  • Moraes CM, Lewis WJ, Tumlinson JH (2000) Examining plant-parasitoid interactions in tritrophic systems. An Soc Entomol Bras 29(2):189–203

    CrossRef  Google Scholar 

  • Moreno-Ripoll R, Agustí N, Berruezo R et al (2012) Conspecific and heterospecific interactions between two omnivorous predators on tomato. Biol Control 62(3):189–196

    CrossRef  Google Scholar 

  • Muniz CA, Togni PHB, Souza LM et al (2014) Coexistências de predadores generalistas mediada pela diversificação vegetal planejada. In: Anais do 25° congresso brasileiro de entomologia, Centro de Convenções, Goiânia, 4–18 set 2014

    Google Scholar 

  • Obrycki JJ, Harwood JD, Kring TJ et al (2009) Aphidophagy by Coccinellidae: application of biological control in agroecosystems. Biol Control 51(2):244–254

    CrossRef  Google Scholar 

  • Ohgushi T (2005) Indirect interaction webs: herbivore-induced effects through trait change in plants. Ann Rev Ecol Evol Syst 36:81–105

    CrossRef  Google Scholar 

  • Oliveira NC, Wilcken CF, Matos CAO (2004) Ciclo biológico e predação de três espécies de coccinelídeos (Coleoptera, Coccinellidae) sobre o pulgão-gigante-do-pinus Cinara atlantica (Wilson) (Hemiptera, Aphididae). Rev Bras Entomol 48(4):529–533

    CrossRef  Google Scholar 

  • Oliveira AS, Souza B, Auad AM et al (2010) Can larval lacewings Chrysoperla externa (Hagen) (Neuroptera, Chrysopidae) be reared on pollen? Rev Bras Entomol 54(4):697–700

    CrossRef  Google Scholar 

  • Pfiffner L, Luka H (2000) Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agric Ecosyst Environ 78(3):215–222

    CrossRef  Google Scholar 

  • Picault S (2011) Functional biodiversity: natural regulation of aphid populations in lettuce crops. Infos Ctifl 275:27–35

    Google Scholar 

  • Polis GA (1999) Why are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos 86(1):3–15

    CrossRef  Google Scholar 

  • Powell BE, Silverman J (2010) Impact of Linepithema humile and Tapinoma sessile (Hymenoptera: Formicidae) on the natural enemies of Aphis gossypii (Hemiptera: Aphididae). Biol Control 54(3):285–291

    CrossRef  Google Scholar 

  • Resende ALS, Viana AJS, Oliveira RJ et al (2010) Consórcio couve-coentro em cultivo orgânico e sua influência nas populações de joaninhas. Hortic Bras 28(1):41–46

    CrossRef  Google Scholar 

  • Resende ALS, Haro MM, Silva VF et al (2012) Diversidade de predadores em coentro, endro e funcho sob manejo orgânico. Arq Inst Biol 79(2):193–199

    CrossRef  Google Scholar 

  • Resende ALS, Souza B, Aguiar-Menezes EL et al (2014) Influência de diferentes cultivos e fatores climáticos na ocorrência de crisopídeos em sistema agroecológico. Arq Inst Biol 81(3):257–263

    CrossRef  Google Scholar 

  • Resende ALS, Ferreira RB, Silveira LCP et al (2015) Desenvolvimento e reprodução de Eriopis connexa (Germar 1824) (Coleoptera: Coccinellidae) alimentada com recursos florais de coentro (Coriandrum sativum L.). Entomotropica 30(2):12–19

    Google Scholar 

  • Rice KB, Eubanks MD (2013) No enemies needed: cotton aphids (Hemiptera: Aphididae) directly benefit from red imported fire ant (Hymenoptera: Formicidae) tending. Fla Entomol 96(3):929–932

    CrossRef  Google Scholar 

  • Rosenheim JA (1998) Higher-order predators and the regulation of insect herbivore populations. Annu Rev Entomol 43:421–447

    CAS  PubMed  CrossRef  Google Scholar 

  • Rosenheim JA, Limburg DD, Colfer RG (1999) Impact of generalist predators on a biological control agent, Chrysoperla carnea: direct observations. Ecol Appl 9(2):409–417

    CrossRef  Google Scholar 

  • Rusch A, Bommarco R, Chiverton P et al (2013) Response of ground beetle (Coleoptera: Carabidae) communities to changes in agricultural policies in Sweden over two decades. Agric Ecosyst Environ 176:63–69

    CrossRef  Google Scholar 

  • Salamanca J, Pareja M, Rodriguez-Saona C et al (2015) Behavioral responses of adult lacewings, Chrysoperla externa, to a rose-aphid-coriander complex. Biol Control 80:103–112

    CrossRef  Google Scholar 

  • Santa-Cecília LVC, Gonçalves-Gervasio RCR, Torres RMS et al (2001) Aspectos bilógicos e consumo alimentar de larvas de Cycloneda sanguinea (Linnaeus, 1763) (Coleoptera: Coccinelidae) alimentadas com Schizaphis graminum (Rondani, 1852) (Hemiptera: Aphididae). Ciênc Agrotec 25(6):1273–1278

    Google Scholar 

  • Santos NRP, Santos-Cividanes TM, Cividanes FJ et al (2009) Aspectos biológicos de Harmonia axyridis alimentada com duas espécies de presas e predação intraguilda com Eriopis connexa. Pesqui Agropecu Bras 44(6):554–560

    CrossRef  Google Scholar 

  • Sarmento RA, Oliveira HG, Holtz AM et al (2004) Fat body morphology of Eriopis connexa (Coleoptera, Coccinellidae) in function of two alimentary sources. Braz Arch Biol Technol 47(3):407–411

    CrossRef  Google Scholar 

  • Sarmento RA, Pallini A, Venzon M et al (2007) Functional response of the predator Eriopis connexa (Coleoptera: Coccinellidae) to different prey types. Braz Arch Biol Technol 50(1):121–126

    CrossRef  Google Scholar 

  • Silva CG, Auad AM, Souza B et al (2004) Aspectos biológicos de Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae) alimentada com Bemisia tabaci (Gennadius, 1889) Biótipo B (Hemiptera: Aleyrodidae) criada em três hospedeiros. Ciênc Agrotec 28(2):243–250

    CrossRef  Google Scholar 

  • Silva DB, Weldegergis BT, Van Loon JJA et al (2017) Qualitative and quantitative differences in herbivore-induced plant volatile blends from tomato plants infested by either Tuta absoluta or Bemisia tabaci. J Chem Ecol 43(1):55–65

    CrossRef  CAS  Google Scholar 

  • Solomon ME (1949) The natural control of animal populations. J Anim Ecol 18(1):1–35

    CrossRef  Google Scholar 

  • Sousa ALV, Silva DB, Silva GG et al (2019) Behavioral response of the generalist predator Orius insidiosus to single and multiple herbivory by two cell content-feeding herbivores in rose plants. Arthropod Plant Interact. https://doi.org/10.1007/s11829-019-09729-5

  • Souza B, Carvalho CF (2002) Population dynamics and seasonal occurrence of adults of Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae) in a citrus orchard in Southern Brazil. Acta Zool Acad Sci Hung 48:301–310

    Google Scholar 

  • Souza B, Costa RIF, Tanque RL et al (2008) Aspectos da predação entre larvas de Chrysoperla externa (Hagen, 1861) e Ceraeochrysa cubana (Hagen, 1861) (Neuroptera: Chrysopidae) em laboratório. Cienc Agrotec 32(3):712–716

    CrossRef  Google Scholar 

  • Thomas MB, Wratten SD, Sotherton NW (1991) Creation of “island” habitats in farmland to manipulate populations of beneficial arthropods: predator densities and emigration. J Appl Ecol 28(3):906–917

    CrossRef  Google Scholar 

  • Thomas CFG, Holland JM, Brown NJ (2002) The spatial distribution of carabid beetles in agricultural landscapes. In: Holland JM (ed) The agroecology of carabid beetles. Intercept, Andover, pp 305–344

    Google Scholar 

  • Torres JB, Boyd DW (2009) Zoophytophagy in predatory Hemiptera. Braz Arch Biol Technol 52(5):1199–1208

    CrossRef  Google Scholar 

  • Triltsch H (1997) Gut contents in field sampled adults of Coccinella septempunctata (col: Coccinellidae). Entomophaga 42(1/2):125–131

    CrossRef  Google Scholar 

  • Van Alebeek F, Visser A, Van den Broek R (2007) Field margins as (winter) refuge for natural enemies. Entomolog Ber 67:223–225

    Google Scholar 

  • Van Houten YM, Hoogerbrugge H, Lenferink KO et al (2016) Evaluation of Euseius gallicus as a biological control agent of western flower thrips and greenhouse whitefly in rose. Nihon Dani Gakkai Shi 259(suppl):147–159

    Google Scholar 

  • Venzon M, Pallini A, Janssen A (2001) Interactions mediated by predators in arthropod food webs. Neotrop Entomol 30(1):1–9

    CrossRef  Google Scholar 

  • Vieira GF, Bueno VHP, Auad AM (1997) Resposta funcional de Scymnus (Pullus) argentinicus (Weise) (Coleoptera: Coccinellidae) a diferentes densidades do pulgão verde Schizaphis graminum (Rondani) (Homoptera: Aphididae). An Soc Entomol Bras 26(3):495–502

    CrossRef  Google Scholar 

  • Wallin H (2002) Foreword. In: Holland JM (ed) The agroecology of carabid beetles. Intercept, Andover, pp xiii–xxiv

    Google Scholar 

  • Warren J, James P (2008) Do flowers wave to attract pollinators? A case study with Silene maritime. J Evol Biol 21(4):1024–1029

    CAS  PubMed  CrossRef  Google Scholar 

  • Weber DC, Lundgren JG (2009) Assessing the trophic ecology of the Coccinellidae: their roles as predators and as prey. Biol Control 51(2):199–214

    CrossRef  Google Scholar 

  • Wissinger SA (1997) Cyclic colonization in predictably ephemeral habitats: a template for biological control in annual crop systems. Biol Control 10(1):4–15

    CrossRef  Google Scholar 

  • Xu X, Enkegaard A (2009) Prey preference of Orius sauteri between Western Flower Thrips and spider mites. Entomol Exp Appl 132(1):93–98

    CrossRef  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the CNPq for granting scholarships to B. Souza and CAPES and FAPEMIG for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brígida Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Souza, B., dos Santos-Cividanes, T.M., Cividanes, F.J., de Sousa, A.L.V. (2019). Predatory Insects. In: Souza, B., Vázquez, L., Marucci, R. (eds) Natural Enemies of Insect Pests in Neotropical Agroecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-24733-1_7

Download citation