Skip to main content

Climate Change and Biological Control of Pests in Agriculture

  • 696 Accesses

Abstract

There is scientific evidence on the impact of climate changes in the agriculture, especially on how these changes affect the phenology, distribution, diversity, and composition of the species in plant, bird, mammal, and insect communities in ecosystems. Regarding the biological control of pests, in general, the temperature increase is expected to rebound negatively, because pests are highly dependent on, and susceptible to environmental changes. This chapter aims at approaching the importance of climate change for the biological control of agricultural pests, as a contribution to understanding factors related with its handling before to exposure to extreme events. In this chapter, aspects related to biological control are analyzed in agricultural territories exposed to extreme events, namely, tolerance, interactions, and resilience capacity. The appropriate climate for the massive multiplication of biological control agents has been relatively studied; however, the effects of climate changes, such as temperature increase, periods of drought, tropical hurricanes, defrosting, and other extreme events, are scarcely documented.

Keywords

  • Agroecosystems
  • Resilience capacity
  • Extreme events

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-24733-1_6
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-24733-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

References

  • Ayres MP, Lombardero MJ (2000) Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci Total Environ 262(3):263–286

    CAS  CrossRef  Google Scholar 

  • Barbercheck ME (1992) Effect of soil physical factors on biological control agents of soil insect pests. Fla Entomol 75(4):539–548

    CrossRef  Google Scholar 

  • Berg MP, Kiers ET, Driessen G et al (2010) Adapt or disperse: understanding species persistence in a changing world. Global Change Biol 16(2):587–598

    CrossRef  Google Scholar 

  • Beveridge OS, Humphries S, Petchey OL (2010) The interacting effects of temperature and food chain length on trophic abundance and ecosystem function. J Anim Ecol 79(3):693–700

    CrossRef  Google Scholar 

  • Butler GD (1985) Populations of several insects on cotton in open-top carbon dioxide enrichment chambers. Southwest Entomo l10:264–266

    Google Scholar 

  • Cagnolo L, Molina SI, Valladares GR (2002) Diversity and guild structure of insect assemblages under grazing and exclusion regimes in a montane grassland from Central Argentina. Biodivers Conserv 11(3):407–420

    CrossRef  Google Scholar 

  • Chapin IIIFS, Sala OE, Huber-Sannwald E et al (2001) The future of biodiversity in a changing world. In: Chapin IIIFS, Sala OE, Huber-Sannwald E (eds) Global biodiversity in a changing environment: scenarios for the 21st century. Springer, New York, pp 1–4

    CrossRef  Google Scholar 

  • Dunson WA, Travis J (1991) The role of abiotic factors in community organization. Am Nat 138(5):1067–1091

    CrossRef  Google Scholar 

  • Estrada ME, Guelmes J (2004) Persistencia de Beauveria bassiana (Bálsamo) Vuillemin en hojas de caña de azúcar (Saccharum sp. híbrido). Fitosanidad 8(4):53–56

    Google Scholar 

  • Fiedler W (2009) Bird ecology as an indicator of climate and global change. In: Letcher T (ed) Climate change: observed impacts on planet Earth. Elsevier, Amsterdam, pp 181–195

    CrossRef  Google Scholar 

  • Gilman SE, Urban MC, Tewksbury J et al (2010) A framework for community interactions under climate change. Trends Ecol Evol 25(6):325–331

    CrossRef  Google Scholar 

  • Grupo Intergubernamental de Expertos sobre el Cambio Climático (2007) Cambioclimático 2007: informe de síntesis. IPPC, Ginebra

    Google Scholar 

  • Grupo Intergubernamental de Expertos sobre el Cambio Climático (2013) Climate change 2013: the physical science basis. IPPC, Ginebra

    Google Scholar 

  • Guzmán C (2014) Cambio climático y control biológico de plagas: efecto de las condiciones abióticas en las interacciones entre enemigos naturales presentes en el agro-ecosistema del aguacate. Tesis, Universidad de Málaga

    Google Scholar 

  • Hódar JA, Zamora R, Peñuelas J (2004) El efecto del cambio global en las interacciones planta-animal. In: Valladares F (ed) Ecología del bosque mediterráneo en un mundo cambiante. Ministeriode Medio Ambiente, Madrid, pp 461–478

    Google Scholar 

  • Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    CAS  CrossRef  Google Scholar 

  • Holton MK, Lindroth RL, Nordheim EV (2003) Foliage quality influences tree-herbivore-parasitoid interactions: effects of elevated CO2, O3, and plant genotype. Oecologia 137(2):233–244

    CrossRef  Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15(2):56–62

    CAS  CrossRef  Google Scholar 

  • Humphries MM (2009) Mammal ecology as an indicator of climate change. In: Letcher T (ed) Climate change: observed impacts on planet earth. Elsevier, Amsterdam, pp 197–214

    CrossRef  Google Scholar 

  • Hunter MD (2001) Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Agric For Entomol 3(3):153–159

    CrossRef  Google Scholar 

  • Inglis GD, Jonson DL, Goettel MS (1995) Influence of ultraviolet light protectans on persistence of the entomopathogenic fungus Beauveria bassiana. Biol Control 5(4):581–590

    CrossRef  Google Scholar 

  • Ladányi M, Horváth L (2010) A review of the potential climate change impact on insect populations-general and agricultural aspects. Appl Ecol Environ Res 8(2):143–152

    CrossRef  Google Scholar 

  • Montserrat M, Ma Sahún R, Guzmán C (2013) Can climate change jeopardize predator control of invasive herbivore species? A case study in avocado agroecosystems in Spain. Exp Appl Acarol 59(1/2):27–42

    CrossRef  Google Scholar 

  • Moore D, Bridge PD, Higgins PM et al (1993) Ultra-violet radiation damage to Metarhizium flavoviride conidia and the protection given by vegetable and mineral oils and chemical sunscreens. Ann Appl Biol 122(3):605–616

    CAS  CrossRef  Google Scholar 

  • Morecroft MD, Keith SA (2009) Plant ecology as an indicator of climate and global change. In: Letcher T (ed) Climate change: observed impacts on planet earth. Elsevier, Amsterdam, pp 297–306

    CrossRef  Google Scholar 

  • Pelini SL, Prior KM, Parker DJ et al (2009) Climate change and temporal and spatial mismatches in insect communities. In: Letcher T (ed) climate change: observed impacts on planet earth. Elsevier, Amsterdam, pp 215–232

    Google Scholar 

  • Sabelis MW (1985) Development. In: Helle W, Sabelis MW (eds) Spider mites: their biology, natural enemies and control world crop pests. Elsevier, Amsterdam, pp 43–53

    Google Scholar 

  • Seo SN (2011) An analysis of public adaptation to climate change using agricultural water schemes in South America. Ecol Econ 70(4):825–834

    CrossRef  Google Scholar 

  • Smits PH (1996) Post-application persistence of entomopathogenic nematodos. Biocontrol Sci Tech 6(3):379–387

    CrossRef  Google Scholar 

  • Stavrinides MC, Daane KM, Lampinen BD et al (2010) Plant water stress, leaf temperature, and spider mite (Acari: Tetranychidae) outbreaks in California vineyards. Environ Entomol 39(4):1232–1241

    CrossRef  Google Scholar 

  • Stireman JO, Dyer LA, Janzen DH et al (2005) Climatic unpredictability and parasitism of caterpillars: implications of global warming. Proc Natl Acad Sci U S A 102(48):17384–17387

    CAS  CrossRef  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J et al (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11(12):1351–1363

    CrossRef  Google Scholar 

  • Vázquez LL (2007) Contribución de la sequía a los desastres fitosanitarios causados por insectos y recomendaciones para mitigar sus impactos. Portal del Medioambiente. http://www.portaldelmedioambiente.com. Accessed: 30 Oct 2007

  • Vázquez LL (2011) Cambio climático, incidencia de plagas y prácticas agroecológicas resilientes. In: Labrada HR, Blandino DV, Funes-Monzote FR Innovación agroecológica, adaptación y mitigación del cambio climático. Instituto Nacional de Ciencias Agrícolas, San José de Las Lajas, pp 75–101

    Google Scholar 

  • Voigt W, Perner J, Davis AJ et al (2003) Trophic levels are differentially sensitive to climate. Ecology 84(9):2444–2453

    CrossRef  Google Scholar 

  • Wallner WE (1987) Factors affecting insect population dynamics: differences between outbreak and non-outbreak species. Annu Rev Entomol 32:317–340

    CrossRef  Google Scholar 

  • Walstad JD, Anderson RF, Stambaugh WJ (1970) Effects of environmental conditions on two species of muscardine fungi (Beauveria bassiana and Metarrhizium anisopliae). J Inverebr Pathol 16(2):221–226

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Vázquez, L.L. (2019). Climate Change and Biological Control of Pests in Agriculture. In: Souza, B., Vázquez, L., Marucci, R. (eds) Natural Enemies of Insect Pests in Neotropical Agroecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-24733-1_6

Download citation