Skip to main content

Dispersion and Increase of Natural Enemies in Agroecosystems

  • Chapter
  • First Online:

Abstract

The dispersion capacity of natural enemies, either as biological control agents released or applied into crops or as natural enemies that inhabit the agroecosystem, is of great importance for the sustainability of pest management. It may happen/occur in three different ways: biotic, abiotic, and anthropogenic, or combinations of these. However, the complexity of the interactions between natural enemies and their crops (or even other host plants), as well as the characteristics of the agroecosystems, constitute decisive factors in the necessity and success of the dispersion. For this chapter, we carried out an analysis, with examples of scientific results and practical experiences, of the dispersion of natural enemies in agroecosystems, for their importance in the capacity of pest populations self-regulation, by means of the boarding of the following aspects: (a) dispersion routes; (b) dispersion factors; (c) dispersion of entomopathogens by their phytophagues and other hosts; (d) dispersion of entomopathogens by entomophagous, and (e) anthropogenic dispersion. The complexity of designing systems of mixed cultivations and the integration of auxiliary vegetation structures into the matrix of the production systems, among other practices, are facilitating the dispersion of natural enemies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altieri MA, Nicholls CI (1994) Biodiversidad y manejo de plagas en agroecosistemas. Icaria, Capellades

    Google Scholar 

  • Avery PB, Hunter WB, Hall DG et al (2009) Diaphorina citri (Hemiptera: Psyllidae) infection and Dissemination of the entomopathogenic fungus Isaria fumosorosea (Hypocreales: Cordycipitaceae) under laboratory conditions. Fla Entomo l92(4):608–618

    Article  Google Scholar 

  • Bendicho A, Gonzalez N (1986) Comportamiento de poblaciones de Cosmopolitessordidus y Tetramoriumguineense en condiciones naturales. Cienc Agric 17:9–12

    Google Scholar 

  • Bueno RCOF, Parra JRP, Bueno AF et al (2009) Desempenho de tricogramatídeos como potenciais agentes de controle de Pseudoplusia includesWalker (Lepidoptera: Noctuidae). Neotrop Entomol 38(3):389–394

    Article  PubMed  Google Scholar 

  • Bustillo AE (2006) Una revisión sobre la broca del café, Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae). Rev Colomb Entomol 32(2):101–116

    Google Scholar 

  • Butt TM, Carreck NL, Ibrahim L et al (2010) Honey-bee-mediated infection of pollen beetle (Meligethes aeneus Fab.) by the insect-pathogenic fungus, Metarhizium anisopliae. Biocontrol Sci Technol 8(4):533–538

    Article  Google Scholar 

  • Caballero S, Carr A, Vázquez LL (2003) Guía de medios biológicos. Instituto de Investigaciones de Sanidad Vegetal. La Habana, CD-ROOM

    Google Scholar 

  • Carruthers RI, Sawyer AJ, Hural K (1991) Use of fungal pathogens for biological control of insect pests. In: Sustainable agriculture research and education in the field. NationalAcademyPress, Washington

    Google Scholar 

  • Castiñeiras A, Caballero S, Rego G et al (1982) Efectividad técnico-económica del empleo de la Hormiga Leona Pheidole megacephala en el control del Tetúan del Boniato Cylas formicarius elegantulus. CiencTecAgric. Prot Plantas 5(supl):103–109

    Google Scholar 

  • Castiñeiras A, Ponce E (1991) Efectividad de la utilización de Pheidole megacephala (Hymenoptera: Formicidae) en la lucha biológica contra Cosmopolites sordidus (Coleoptera: Curculionidae). Prot Plantas 1:15–21

    Google Scholar 

  • Chandler D, Davidson G, Jacobson RJ (2005) Laboratory and glasshouse evaluation of entomopathogenic fungi against the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), on tomato Lycopersicon esculentum. Biocontrol Sci Technol 15(1):37–54

    Article  Google Scholar 

  • Down PF, Vega FE (2003) Autodissemination of Beauveriabassiana by Sap Beetles (Coleoptera: Nitidulidae) to overwintering sites. Biocontrol Sci Technol 13(1):65–75

    Article  Google Scholar 

  • Elisei T, RibeiroJúnior C, FernandesJúnior AJ et al (2012) Management of social wasp colonies in eucalyptus plantations (Hymenoptera: Vespidae). Sociobiology 59(4):1–8

    Google Scholar 

  • Feng MG, Chen C, Suwei S (2007) Aphid dispersal flight disseminates fungal pathogens and parasitoids as natural control agents of aphids. Ecol Entomol 32(1):97–104

    Article  Google Scholar 

  • Forschler BT, Young SY (1993) Southern corn rootworm adults (Coleoptera: Chrysomelidae) may act as a non-host disseminator of nuclear polyhedrosis virus. J Invertebr Pathol 61:313–314

    Article  Google Scholar 

  • Fuentes-Contreras E, Pell JK, Niemeyer HM (1998) Influence of plant resistance at the third trophic level: interactions between parasitoids and entomopathogenic fungi of cereal aphids. Oecologia 117(3):426–432

    Article  PubMed  Google Scholar 

  • Furlong MJ, Pell JK (1996) Interactions between the fungal entomopathogen Zoophthora radicans Brefeld (Entomophthorales) and two hymenopteran parasitoids attacking the diamondback moth, Plutella xylostella L. J Invertebr Pathol 68(1):15–21

    Article  CAS  PubMed  Google Scholar 

  • Fuxa JR, Tanada Y (1987) Epizootiology of insect diseases. Wiley-Interscience, New York

    Google Scholar 

  • García Roa FA (2000) Control biológico de plagas: manual ilustrado. MIP, Palmira

    Google Scholar 

  • Grez AA, Zaviezo T, Díaz S et al (2008) Effects of habitat loss and fragmentation on the abundance and species richness of aphidophagous beetles and aphids in experimental alfalfa landscapes. Eur J Entomol 105(3):411–420

    Article  Google Scholar 

  • Gross HR, Hamm JJ, Carpenter JE (1994) Design and application of a hive-mounted device that uses honey bees (Hymenoptera: Apidae) to disseminate heliothis nuclear polyhedrosis virus. Environ Entomol 23(2):492–501

    Article  Google Scholar 

  • Hajek AE, Dahlsten DL (1987) Behavioural interactions between three birch aphid species and Adalia bipunctata larvae. Entomol Exp Appl 45(1):81–87

    Article  Google Scholar 

  • Hajek AE, Leger RJS (1994) Interactions between fungal pathogens and insect hosts. Annu Rev Entomol 39:293–322

    Article  Google Scholar 

  • Harvey CA, Haber WA, Mejías F et al (1999) Árboles remanentes en potreros de Costa Rica: herramientas para la conservación? Agrofor Am 6:19–22

    Google Scholar 

  • Hernández LM, Manzano MR (2016) Efecto del viento en la dispersión a corta distancia del parasitoide Amitus fuscipennis MacGown y Nebeker (Hymenoptera: Platygasteridae) en cultivos de fríjol y habichuela. Acta Agron 65(1):80–86

    Google Scholar 

  • Keller M, Lewis W, Stinner R (1985) Biological and practical significance of movement by Trichogramma species: a review. Southwestern Entomol 8:138–155

    Google Scholar 

  • Kristensen NP, Schellhorn NA, Hulthen AD et al (2013) Wind-borne dispersal of a parasitoid: the process, the model, and its validation. Environ Entomol 42(6):1137–1148

    Article  PubMed  Google Scholar 

  • Liu TX, Stansly PA, Gerling D (2015) Whitefly parasitoids: distribution, life history, bionomics, and utilization. Annu Rev Entomol 60:273–292

    Article  CAS  PubMed  Google Scholar 

  • McDougall S, Mills N (1997) Dispersal of Trichogramma platneri Nagarkatti Hymenoptera: Trichogrammatidae from point-source releases in an apple orchard in California. J Appl Entomol 121(1/5):205–209

    Article  Google Scholar 

  • McManus ML (1988) Weather, behaviour and insect dispersal. Mem Entomol Soc Can 120(S146):71–94

    Article  Google Scholar 

  • Meyling NV, Pell JK, Eilenberg J (2006) Dispersal of Beauveria bassiana by the activity of nettle insects. J Invertebr Pathol 93(2):121–126

    Article  PubMed  Google Scholar 

  • Mohammed AA, Hatcher PE (2017) Combining entomopathogenic fungi and parasitoids to control the green peach aphid Myzus persicae. Biol Control 110:44–55

    Article  Google Scholar 

  • Narváez M, González MT, Bustillo AE et al (1997) Producción de esporas de aislamientos de Beauveria bassiana y Metarhizium anisopliae en diferentes sustratos. Rev Colomb Entomol 23(2/3):125–132

    Google Scholar 

  • Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Bio l4(4):355–364

    Article  Google Scholar 

  • Oliveira HN, Bellon PP, Santana DRS (2012) Critérios para determinação da idade ideal de liberação de Cotesia flavipes. Cad Agroecol 7(2):60–64

    Google Scholar 

  • Pedersen EA, Morrall RAA, McCartney HA et al (1994) Dispersal of conidia of Ascochyta fabae f. sp. lentis from infected lentil plants by simulated wind and rain. Plant Pathol 43(1):50–55

    Article  Google Scholar 

  • Pell JK, Tydeman C, McCartney HA (1997) Impact of rainfall on the persistence and transmission of Erynia neoaphidis. IOBC/WPRS Bull 21:49

    Google Scholar 

  • Petit J, Hoddle M, Grandgirard J et al (2008) Short-distance dispersal behavior and establishment of the parasitoid Gonatocerus ashmeadi Hymenoptera: Mymaridae in Tahiti: implications for its use as a biological control agent against Homalodisca vitripennis Hemiptera: Cicadellidae. Biol Control 45(3):344–352

    Article  Google Scholar 

  • Pozo E (2013) Empleo de los nematodos entomopatógenos en el manejo de plagas. En: Vázquez LL Manual para la adopción del manejo agroecológico de plagas en la agricultura urbana. INISAV-INIFAT, La Habana, pp 59–74

    Google Scholar 

  • Pozo E, Sisne ML, Rodríguez U et al (2006) Susceptibilidad de escarabajos (Coleoptera: Scarabaeidae) presentes en la piña (Ananas comosus) en Ciego de Ávila a nematodos entomopatógenos. Parte II. Géneros Phyllophaga y Cyclocephala. Cent Agríc 33(3):83–86

    Google Scholar 

  • Pratissoli D, Thuler RT, Andrade GS et al (2005) Estimate of Trichogramma pretiosum to control Tuta absolutain stalked tomato. Pesqui Agropecu Bras 40:715–718

    Article  Google Scholar 

  • Prezoto F, Machado VLL (1999) Ação de Polistes (Aphanilopterus) simillimus Zikán (Hymenoptera, Vespidae) no controle de Spodoptera frugiperda (Smith) (Lepidoptera, Noctuidae). Rev Bras Zool 16(3):841–850

    Article  Google Scholar 

  • Rashki M, Kharazi-Pakdel A, Allahyari H et al (2009) Interactions among the entomopathogenic fungus, Beauveria bassiana (Ascomycota: Hypocreales), the parasitoid, Aphidius matricariae (Hymenoptera: Braconidae), and its host, Myzus persicae (Homoptera: Aphididae). Biol Control 50:324–328

    Article  Google Scholar 

  • Rehman A, Powell W (2010) Host selection behaviour of aphid parasitoids Aphidiidae: Hymenoptera. J Plant Breed Crop Sci 2(10):299–311

    Google Scholar 

  • Roche R, Abreu S (1983) Control del Picudo Negro del Plátano (Cosmopolites sordidus) por la hormiga Tetramorium guineense. Cienc Agric 17:41–49

    Google Scholar 

  • Roy HE, Pell JK, Clark SJ et al (1998) Implications of predator foraging on aphid pathogen dynamics. J Invertebr Pathol 71(3):236–247

    Article  CAS  PubMed  Google Scholar 

  • Ruiz R (1996) Efecto de la fenología del fruto del café sobre los parámetros de la tabla de vida de la broca del café; Hypothenemus hampei (Ferrari). Universidad de Caldas, Tesis

    Google Scholar 

  • Schellhorn N, Bianchi F, Hsu C (2014) Movement of entomophagous arthropods in agricultural landscapes: links to pest suppression. Annu Rev Entomol 59:559–581

    Article  CAS  PubMed  Google Scholar 

  • Scholte EJ, Knols BGJ, Takken W (2004) Autodissemination of the entomopathogenic fungus Metarhizium anisopliae amongst adults of the malaria vector Anopheles gambiae. Malar J 3(1):45

    Article  PubMed  PubMed Central  Google Scholar 

  • Shengyong W, Zhenlong X, Weinan S et al (2018) Effects of Beauveria bassiana on predation and behavior of the predatory mite Phytoseiulus persimilis. J Invertebr Pathol 153:51–56

    Article  Google Scholar 

  • Shimazu MS, Soper RS (1986) Pathogenicity and sporulation of Entomophthora maimaiga (Entomophthorales: Entomophthoraceae) on larvae of the gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae). Appl Entomol Zool 21:589–596

    Article  Google Scholar 

  • Smith SM (1994) Methods and timing of releases of Trichogramma to control lepidopterous pests. In: Wajnberg E, Hassan SA (eds) Biological control with egg parasitoids. CAB International, Wallingford, pp 113–144

    Google Scholar 

  • Steinkraus DC, Hollingsworth RG, Boys GO (1996) Aerial spores of Neozygites fresenii (Entomophthorales: Neozygitaceae): density, periodicity and potential role in cotton aphid (Homoptera: Aphididae) epizootics. Environ Entomol 25(1):48–57

    Article  Google Scholar 

  • Tsutsumi T, Teshiba M, Yamanaka M et al (2003) Anautodissemination system for the control of brown winged green bug, Plautia crossota stali Scott (Heteroptera: Pentatomidae) by an entomopathogenic fungus, Beauveria bassiana E- 9102 combined with aggregation pheromone. Japanese J Appl Entomol Zool 47(4):159–163

    Article  Google Scholar 

  • Turner MG, Gardner R, O’Neill R (2001) Landscape ecology in theory and practice: pattern and process. Spring, New York

    Google Scholar 

  • Vázquez LL, Elósegui O (2011) Manejo de epizootias por hongos entomopatógenos. En:Vázquez LL Manual para la adopción del manejo agroecológico de plagas en fincas de la agricultura suburbana. Inisav, La Habana, pp 145–162

    Google Scholar 

  • Vázquez LL, Elósegui O, Leyva L et al (2010) Ocurrencia de epizootias causadas por Beauveria bassiana (Bals.) Vuill. en poblaciones de la broca del café (Hypothenemus hampei Ferrari) en las zonas cafetaleras de Cuba. Fitosanidad 14(2):111–116

    Google Scholar 

  • Vázquez LL, Matienzo Y, Veitía M et al (2008) Manejo y conservación de enemigos naturales de insectos fitófagos en los sistemas agrícolas de Cuba. Cidisav, La Habana

    Google Scholar 

  • Vázquez LL, Pérez I (1997) Introducción y dispersión del minador de la hoja de los cítricos (Phyllocnistis citrella Stainton) en la región Neotropical. Levante Agrícola 36(338):4–7

    Google Scholar 

  • Vázquez LL, Veitía M, Fernández E et al (2009) Diagnóstico rápido de la ocurrencia de plagas en sistemas agrícolas de Cuba por eventos extremos de cambios en el Clima. Rev Bras Agroecol 4(2):2149–2152

    Google Scholar 

  • Vet LEM, Dicke M (1992) Ecologyofinfochemicalusebynaturalenemiesinatritrophic context. Annu Rev Entomol 37:141–172

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vázquez, L.L., Jacques, G.C. (2019). Dispersion and Increase of Natural Enemies in Agroecosystems. In: Souza, B., Vázquez, L., Marucci, R. (eds) Natural Enemies of Insect Pests in Neotropical Agroecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-24733-1_5

Download citation

Publish with us

Policies and ethics