Skip to main content

Use of Semiochemical-Based Strategies to Enhance Biological Control

Abstract

It has been long known that natural enemies use chemical signals of multiple origin sources in host/prey finding. These semiochemicals are derived from host/prey and its subproducts (known as kairomones) or host/prey-plant complex, such as herbivore-induced plant volatiles (HIPVs). Strategies can exploit those chemicals, especially the volatiles as host/prey pheromones and HIPVs, to recruit and retain natural enemies in crops or optimize natural enemy foraging efficiency. Although far less studied, natural enemy pheromones can also be explored in tactics to enhance biological control efficiency. Several studies have shown that semiochemical-based tactics improve conservation and/or augmented biological control. In this chapter, I reviewed the main semiochemical-based practices to improve biological control in the literature and critically discussed their advantages and drawbacks. Given the vast literature on natural enemy behavior to host/prey and plant odors, I gave special attention to practical studies conducted in greenhouses or field conditions.

Keywords

  • Arthropod behavior
  • Kairomones
  • Natural enemy foraging efficiency
  • Pheromones
  • Synomones
  • Tritrophic interactions

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-24733-1_41
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-24733-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

References

  • Afsheen S, Wang X, Li R et al (2008) Differential attraction of parasitoids in relation to specificity of kairomones from herbivores and their by-products. Insect Sci 15(5):381–397

    CrossRef  Google Scholar 

  • Abassi SA, Birkett MA, Pettersson J et al (2000) Response of the seven-spot ladybird to an aphid alarm pheromone and an alarm pheromone inhibitor is mediated by paired olfactory cells. J Chem Ecol 26:1765–1771

    CAS  CrossRef  Google Scholar 

  • Aldrich JR, Cantelo WW (1999) Suppression of Colorado potato beetle infestation by pheromone-mediated augmentation of the predatory spined soldier bug, Podisus maculiventris (Say) (Heteroptera: Pentatomidae). Agric For Entomol 1:209–217

    CrossRef  Google Scholar 

  • Allison JD, Hare JD (2009) Learned and naïve natural enemy responses and the interpretation of volatile organic compounds as cues or signals. New Phytol 184:768–782

    CAS  PubMed  CrossRef  Google Scholar 

  • Alim MA, Lim, UT (2011) Refrigerated eggs of Riptortus pedestris (Hemiptera: Alydidae) added to aggregation pheromone traps increase field parasitism in soybean. J Econ Entomol 104:1833–1839

    PubMed  CrossRef  Google Scholar 

  • Babikova Z, Gilbert L, Bruce T et al (2014) Arbuscular mycorrhizal fungi and aphids interact by changing host plant quality and volatile emission. Funct Ecol 28:375–385

    CrossRef  Google Scholar 

  • Battaglia D, Poppy G, Powell W et al (2000) Physical and chemical cues influencing the oviposition behaviour of Aphidius ervi. Entomol Exp Appl 94:219–227

    CrossRef  Google Scholar 

  • Beevers M, Lewis WJ, Gross HR, Nordlund DA (1981) Kairomones and their use for management of entomophagous insects: X. Laboratory Studies on Manipulation of Host-Finding Behavior of Trichogramma pretiosum Riley with a Kairomone Extracted from Heliothis zea (Boddie) Moth Scales. J Chem Ecol 7(3):635–648

    CAS  PubMed  CrossRef  Google Scholar 

  • Bin F, Vinson SB, Strand MR et al (1993) Source of an egg kairomone for Trissolcus basalis, a parasitoid of Nezara viridula. Physiol Entomol 18:7–15

    CrossRef  Google Scholar 

  • Bruce TJA, Aradottir GI, Smart LE et al (2015) The first crop plant genetically engineered to release an insect pheromone for defence. Sci Rep 5:11183

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chen YH, Gols R, Benrey B (2015) Crop domestication and its impact on naturally selected trophic interactions. Annu Rev Entomol 60:35–58

    CAS  PubMed  CrossRef  Google Scholar 

  • Crock J, Wildung M, Croteau R (1997) Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-beta-farnesene. Proc Natl Acad Sci USA 94:12833–12838

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • De Boer JG, Dicke M (2004) The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis. J Chem Ecol 30:255–271

    PubMed  CrossRef  Google Scholar 

  • De Moraes CM, Lewis WJ, Pare PW et al (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573

    CrossRef  Google Scholar 

  • Dicke M, Van Beek TA, Posthumus MA et al (1990a) Isolation and identification of volatile kairomone that affects acarine predator prey interactions Involvement of host plant in its production. J Chem Ecol 16:381–396

    CAS  PubMed  CrossRef  Google Scholar 

  • Dicke M, Sabelis MW, Takabayashi J et al (1990b) Plant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application in pest control. J Chem Ecol 16:3091–3118

    CAS  PubMed  CrossRef  Google Scholar 

  • Dicke M, Sabelis MW (1988) Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? Func Ecol 2:131–139

    CrossRef  Google Scholar 

  • Erb M, Meldau S, Howe GA (2012) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17:250–259

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Erb M, Veyrat N, Robert CAM et al (2015) Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun 6:6273

    CAS  PubMed  CrossRef  Google Scholar 

  • Farmer EE, Johnson RR, Ryan CA (1992) Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic Acid. Plant Physiol 98:995–1002

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Fatouros NE, Huigens ME, van Loon JJA et al (2005) Butterfly anti-aphrodisiac lures parasitic wasps. Nature 433:704–704

    CAS  PubMed  CrossRef  Google Scholar 

  • Frost CJ, Mescher MC, Dervinis C et al (2008) Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis -3-hexenyl acetate. New Phytol 180:722–734

    CAS  PubMed  CrossRef  Google Scholar 

  • Giunti G, Canale A, Messing RH et al (2015) Parasitoid learning: current knowledge and implications for biological control. Biol Control 90:208–219

    CrossRef  Google Scholar 

  • Gouinguené SP, Turlings TCJ (2002) The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol 129:1296–1307

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Gross HR, Lewis WJ, Jones RL, Nordlund DA (1975) Kairomones and their use for management of entomophagous insects. III. Stimulation of Trichograrnma achaeae, T. pretiosum, and Microplitis croceipes with host-seeking stimuli at time of release to improve their efficiency. J Chem Ecol 1(4):431–438

    CrossRef  Google Scholar 

  • Halitschke R, Stenberg JA, Kessler D et al (2007) Shared signals –‘alarm calls’ from plants increase apparency to herbivores and their enemies in nature. Ecol Lett 1(1):24–34

    Google Scholar 

  • Hardie J, Hick AJ, Höller C et al (1994) The responses of Praon spp. parasitoids to aphid sex pheromone components in the field. Entomol Exp Appl 71:95–99

    CAS  CrossRef  Google Scholar 

  • Hatano E, Kunert G, Michaud JP, Weisser WW (2008) Chemical cues mediating aphid location by natural enemies. Eur J Entomol 105:797–806

    CAS  CrossRef  Google Scholar 

  • Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15:176–184

    CAS  PubMed  CrossRef  Google Scholar 

  • James DG (2003) Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. Environ Entomol 32:977–982

    CAS  CrossRef  Google Scholar 

  • James DG (2005) Further field evaluation of synthetic herbivore-induced plan volatiles as attractants for beneficial insects. J Chem Ecol 31:481–495

    CAS  PubMed  CrossRef  Google Scholar 

  • Jumean Z, Jones E, Gries G (2009) Does aggregation behavior of codling moth larvae, Cydia pomonella, increase the risk of parasitism by Mastrus ridibundus? Biol Control 49:254–258

    CrossRef  Google Scholar 

  • Kalaivani K, Kalaiselvi MM, Senthil-Nathan S (2016) Effect of methyl salicylate (MeSA), an elicitor on growth, physiology and pathology of resistant and susceptible rice varieties. Sci Rep 6:34498

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kaplan I (2012) Attracting carnivorous arthropods with plant volatiles: The future of biocontrol or playing with fire? Biol Control 60:77–89

    CrossRef  Google Scholar 

  • Kaplan I, Lewis D (2015) What happens when crops are turned on? Simulating constitutive volatiles for tritrophic pest suppression across an agricultural landscape. Pest Manag Sci 71:139–150

    CAS  PubMed  CrossRef  Google Scholar 

  • Khan ZR, James DG, Midega CAO, Pickett JA (2008) Chemical ecology and conservation biological control. Biol Control 45:210–224

    CAS  CrossRef  Google Scholar 

  • Köllner TG, Held M, Lenk C et al (2008) A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20:482–494

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391

    CAS  PubMed  CrossRef  Google Scholar 

  • Leal WS, Higuchi H, Mizutani N et al (1995) Multifunctional communication in Riptortus clavatus (Heteroptera: Alydidae): conspecific nymphs and egg parasitoid Ooencyrtus nezarae use the same adult attractant pheromone as chemical cue. J Chem Ecol 21:973–985

    CAS  PubMed  CrossRef  Google Scholar 

  • Leroy PD, Sabri A, Heuskin S et al (2011) Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nat Commun 2:348

    PubMed  CrossRef  CAS  Google Scholar 

  • Lewis WJ, Jones RL, Nordlund DA, Gross HR (1975) Kairomones and their use for management of entomophagous insects: II. Mechanisms causing increase in rate of parasitization by Trichogramma spp. J Chem Ecol 1:349–360

    CAS  CrossRef  Google Scholar 

  • Lewis WJ, Jones RL, Sparks AN (1972) A host-seeking stimulant for the egg parasite Trichogramma evanescens: its source and a demonstration of its laboratory and field activity. Ann Entomol Soc Am 65:1087–1089

    CrossRef  Google Scholar 

  • Lewis WJ, Nordlund DA, Gueldner RC et al (1982) Kairomones and their use for management of entomophagous insects. XIII. Kairomonal Activity for Trichogramma spp. of Abdominal Tips, Excretion, and a Synthetic Sex Pheromone Blend of Heliothis zea (Boddie) Moths. J Chem Ecol 8(10):1323–1331

    CAS  PubMed  CrossRef  Google Scholar 

  • Li X, Garvey M, Kaplan I et al (2018) Domestication of tomato has reduced the attraction of herbivore natural enemies to pest-damaged plants. Agric For Entomol 20:390–401

    CrossRef  Google Scholar 

  • Liu J, Zhu J, Zhang P et al (2017) Silicon supplementation alters the composition of herbivore induced plant volatiles and enhances attraction of parasitoids to infested rice plants. Front Plant Sci 8:1–8

    Google Scholar 

  • Lou Y-G, Du M-H, Turlings TCJ et al (2005) Exogenous application of jasmonic acid induces volatile emissions in rice and enhances parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae. J Chem Ecol 31:1985–2002

    CAS  PubMed  CrossRef  Google Scholar 

  • McCormick AC (2016) Can plant-natural enemy communication withstand disruption by biotic and abiotic factors? Ecol Evol 6:8569–8582

    CrossRef  Google Scholar 

  • Magalhães DM, Fidelis IAS, Borges M et al (2019) Anthonomus grandis aggregation pheromone induces cotton indirect defence and attracts the parasitic wasp Bracon vulgaris. J Exp Bot 70(6):1891–1901. https://doi.org/10.1093/jxb/erz040

    CrossRef  PubMed  Google Scholar 

  • Matthes MC, Bruce TJA, Ton J et al (2010) The transcriptome of cis-jasmone-induced resistance in Arabidopsis thaliana and its role in indirect defence. Planta 232:1163–1180

    CAS  PubMed  CrossRef  Google Scholar 

  • Mattiacci L, Dicke M (1995) The parasitoid Cotesia glomerata (Hymenoptera: Braconidae) discriminates between first and fifth larval instars of its host Pieris brassicae, on the basis of contact cues from frass, silk, and herbivore-damaged leaf tissue. J Insect Behav 8:485–498

    CrossRef  Google Scholar 

  • Mattiacci L, Vinson SB, Williams HJ et al (1993) A long-range attractant kairomone for egg parasitoid Trissolcus basalis, isolated from defensive secretion of its host, Nezara viridula. J Chem Ecol 19:1167–1181

    CAS  PubMed  CrossRef  Google Scholar 

  • Mithofer A, Boland W (2008) Recognition of herbivory-associated molecular patterns. Plant Physiol 146:825–831

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Mizutani N (2006) Pheromones of male stink bugs and their attractiveness to their parasitoids. Japanese J Appl Entomol Zool 50:87–99

    CAS  CrossRef  Google Scholar 

  • Moraes MCB, Laumann RA, Pareja M et al (2009) Attraction of the stink bug egg parasitoid Telenomus podisi to defence signals from soybean activated by treatment with cis -jasmone. Entomol Exp Appl 131:178–188

    CAS  CrossRef  Google Scholar 

  • Mori K, Tashiro T (2004) Useful reactions in modern pheromone synthesis. Curr Org Synth 1:11–29

    CAS  CrossRef  Google Scholar 

  • Mumm R, Dicke M (2010) Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense the present review is one in the special series of reviews on animal–plant interactions. Can J Zool 88:628–667

    CAS  CrossRef  Google Scholar 

  • Mansour R, Suma P, Mazzeo G, Russo A et al. (2010). Using a kairomone-based attracting system to enhance biological control of mealybugs (Hemiptera: Pseudococcidae) by Anagyrus sp. near pseudococci (Hymenoptera: Encyrtidae) in Sicilian vineyards. J Entomol Acarol Res 42:161–170

    CrossRef  Google Scholar 

  • Nakashima Y, Ida TY, Powell W et al (2016) Field evaluation of synthetic aphid sex pheromone in enhancing suppression of aphid abundance by their natural enemies. BioControl 61:485–496

    CAS  CrossRef  Google Scholar 

  • Nordlund DA, Lewis WJ, Todd JW, Chalfant RB (1977) Kairomones and their use for management of entomophagous insects. J Chem Ecol 3:513–518

    CrossRef  Google Scholar 

  • Nordlund DA, Strand MR, Lewis WJ, Vinson SB (1987) Role of kairomones from host accessory gland secretion in host recognition by Telenomus remus and Trichogramma pretiosum, with partial characterization. Entomol Exp Appl 44:37–43

    CrossRef  Google Scholar 

  • Onodera J, Matsuyama S, Suzuki T, Fujii K (2002) Host-recognizing kairomones for parasitic wasp, Anisopteromalus calandrae, from larvae of azuki bean weevil, Callosobruchus chinensis. J Chem Ecol 28:1209–1220

    CAS  PubMed  CrossRef  Google Scholar 

  • Orre Gordon GUS, Wratten SD, Jonsson M et al (2013) ‘Attract and reward’: combining a herbivore-induced plant volatile with floral resource supplementation – Multi-trophic level effects. Biol Control 64:106–115

    CAS  CrossRef  Google Scholar 

  • Pangesti N, Weldegergis BT, Langendorf B et al (2015) Rhizobacterial colonization of roots modulates plant volatile emission and enhances the attraction of a parasitoid wasp to host-infested plants. Oecologia 178:1169–1180

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Pascal LD, Raki A, Sabrine A et al (2014) Aphid honeydew: an arrestant and a contact kairomone for Episyrphus balteatus (Diptera: Syrphidae) larvae and adults. Eur J Entomol 111:237–242

    CrossRef  Google Scholar 

  • Peñaflor MFGV, Bento JMS (2013) Herbivore-induced plant volatiles to enhance biological control in agriculture. Neotrop Entomol 42:331–343

    PubMed  CrossRef  CAS  Google Scholar 

  • Pickett JA, Griffiths DC (1980) Composition of aphid alarm pheromones. J Chem Ecol 6:349–360

    CAS  CrossRef  Google Scholar 

  • Pompanon F, De Schepper B, Mourer Y et al (1997) Evidence for a substrate-borne sex pheromone in the parasitoid wasp Trichogramma brassicae. J Chem Ecol 23:1349–1360

    CAS  CrossRef  Google Scholar 

  • Rasmann S, Bennett A, Biere A et al (2017) Root symbionts: powerful drivers of plant above- and belowground indirect defenses. Insect Sci 24:947–960

    CAS  PubMed  CrossRef  Google Scholar 

  • Rasmann S, Köllner TG, Degenhardt J et al (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    CAS  PubMed  CrossRef  Google Scholar 

  • Reddy GVP, Holopainen JK, Guerrero A (2002) Olfactory responses of Plutella xylostella natural enemies to host pheromone, larval frass, and green leaf cabbage volatiles. J Chem Ecol 28:131–143

    CAS  PubMed  CrossRef  Google Scholar 

  • Reymond P (2013) Perception, signaling and molecular basis of oviposition-mediated plant responses. Planta 238:247–258

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Robert CAM, Erb M, Hiltpold I et al (2013) Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field. Plant Biotechnol J 11:628–639

    CAS  PubMed  CrossRef  Google Scholar 

  • Rodriguez-Saona C, Kaplan I, Braasch J et al (2011) Field responses of predaceous arthropods to methyl salicylate: a meta-analysis and case study in cranberries. Biol Control 59:294–303

    CAS  CrossRef  Google Scholar 

  • Rowen E, Gutensohn M, Dudareva N, Kaplan I (2017) Carnivore attractant or plant elicitor? Multifunctional roles of methyl salicylate lures in tomato defense. J Chem Ecol 43:573–585

    CAS  PubMed  CrossRef  Google Scholar 

  • Ruther J, Homann M, Steidle JLM (2000) Female-derived sex pheromone mediates courtship behaviour in the parasitoid Lariophagus distinguendus. Entomol Exp Appl 96:265–274

    CAS  CrossRef  Google Scholar 

  • Rutledge CE (1996) A survey of identified kairomones and synomones used by insect parasitoids to locate and accept their hosts. Chemoecology 7:121–131

    CAS  CrossRef  Google Scholar 

  • Salamanca J, Souza B, Rodriguez-Saona C (2018) Cascading effects of combining synthetic herbivore-induced plant volatiles with companion plants to manipulate natural enemies in an agro-ecosystem. Pest Manag Sci 74:2133–2145

    CAS  CrossRef  Google Scholar 

  • Sant’Ana J, Bruni R, Abdul-Baki AA, Aldrich JR (1997) Pheromone-induced movement of nymphs of the predator, Podisus maculiventris (Heteroptera: Pentatomidae). Biol Control 10:123–128

    CrossRef  Google Scholar 

  • Simpson M, Gurr GM, Simmons AT et al (2011) Field evaluation of the ‘attract and reward’ biological control approach in vineyards. Ann Appl Biol 159:69–78

    CrossRef  Google Scholar 

  • Smith JL, De Moraes CM, Mescher MC (2009) Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag Sci 65:497–503

    CAS  PubMed  CrossRef  Google Scholar 

  • Snoeren TAL, Mumm R, Poelman EH et al (2010) The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum. J Chem Ecol 36:479–489

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sobhy IS, Erb M, Lou Y, Turlings TCJ (2014) The prospect of applying chemical elicitors and plant strengtheners to enhance the biological control of crop pests. Philos Trans R Soc B Biol Sci 369:20120283

    CrossRef  CAS  Google Scholar 

  • Stout MJ, Zehnder GW, Baur ME (2002) Potential for the use of elicitors of plant resistance in arthropod management programs. Arch Insect Biochem Physiol 51:222–235

    CAS  PubMed  CrossRef  Google Scholar 

  • Takemoto H, Powell W, Pickett J et al (2012) Two-step learning involved in acquiring olfactory preferences for plant volatiles by parasitic wasps. Anim Behav 83:1491–1496

    CrossRef  Google Scholar 

  • Tamiru A, Bruce TJ, Woodcock CM et al (2011) Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecol Lett 14:1075–1083

    PubMed  CrossRef  Google Scholar 

  • Tamiru A, Khan ZR, Bruce TJ (2015) New directions for improving crop resistance to insects by breeding for egg induced defence. Curr Opin Insect Sci 9:51–55

    CrossRef  PubMed  Google Scholar 

  • Thaler JS (2002) Effect of jasmonate-induced plant responses on the natural enemies of herbivores. J Anim Ecol 71:141–150

    CrossRef  Google Scholar 

  • Thaler JS (1999) Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399:686–688

    CAS  CrossRef  Google Scholar 

  • Thibout E (2005) Role of caterpillar silk thread in location of host pupae by the parasitoid Diadromus pulchellus. J Insect Behav 18:817–826

    CrossRef  Google Scholar 

  • Turlings TCJ, Erb M (2018) Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu Rev Entomol 63:433–452

    CAS  PubMed  CrossRef  Google Scholar 

  • Turlings TCJ, Tumlinson JH, Heath RR et al (1991) Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. J Chem Ecol 17:2235–2251

    CAS  PubMed  CrossRef  Google Scholar 

  • Usha Rani P, Indu Kumari S, Sriramakrishna T, Ratna Sudhakar T (2006) Kairomones extracted from rice yellow stem borer and their influence on egg parasitization by Trichogramma japonicum Ashmead. J Chem Ecol 33:59–73

    CrossRef  CAS  Google Scholar 

  • von Mérey G, Veyrat N, Mahuku G et al (2011) Dispensing synthetic green leaf volatiles in maize fields increases the release of sesquiterpenes by the plants, but has little effect on the attraction of pest and beneficial insects. Phytochemistry 72:1838–1847

    CrossRef  CAS  Google Scholar 

  • von Mérey GE, Veyrat N, De Lange E et al (2012) Minor effects of two elicitors of insect and pathogen resistance on volatile emissions and parasitism of Spodoptera frugiperda in Mexican maize fields. Biol Control 60:7–15

    CrossRef  Google Scholar 

  • Vet MEL, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172

    CrossRef  Google Scholar 

  • Vieira CR, Moraes MCB, Borges M et al (2013) cis-Jasmone indirect action on egg parasitoids (Hymenoptera: Scelionidae) and its application in biological control of soybean stink bugs (Hemiptera: Pentatomidae). Biol Control 64:75–82

    CAS  CrossRef  Google Scholar 

  • Vinson SB (1984) Parasitoid-host relationship. In: Chemical ecology of insects. Springer US, Boston, MA, pp 205–233

    CrossRef  Google Scholar 

  • Vinson SB (1976) Host selection by insect parasitoids. Annu Rev Entomol 21:109–133

    CrossRef  Google Scholar 

  • Vosteen I, Weisser WW, Kunert G (2016) Is there any evidence that aphid alarm pheromones work as prey and host finding kairomones for natural enemies? Ecol Entomol 41:1–12

    CrossRef  Google Scholar 

  • Wang S-N, Peng Y, Lu Z-Y et al (2015) Identification and expression analysis of putative chemosensory receptor genes in Microplitis mediator by antennal transcriptome screening. Int J Biol Sci 11:737–751

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wäschke N, Meiners T, Rostás M (2013) Foraging strategies of parasitoids in complex chemical environments. In: Chemical Ecology of Insect Parasitoids. Wiley-Blackwell, Chichester, UK, pp 37–63

    CrossRef  Google Scholar 

  • Whitfield J (2001) Making crops cry for help. Nature 410:736–737

    CAS  PubMed  CrossRef  Google Scholar 

  • Wölfling M, Rostás M (2009) Parasitoids use chemical footprints to track down caterpillars. Commun Integr Biol 2:353–355

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ye M, Song Y, Long J et al (2013) Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proc Natl Acad Sci 110:E3631–E3639

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Fernanda Gomes Villalba Peñaflor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Peñaflor, M.F.G.V. (2019). Use of Semiochemical-Based Strategies to Enhance Biological Control. In: Souza, B., Vázquez, L., Marucci, R. (eds) Natural Enemies of Insect Pests in Neotropical Agroecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-24733-1_41

Download citation