Andow DA, Lövei GL, Arpaia S (2006) Ecological risk assessment for Bt crops. Nat Biotechnol 24:749–751
CAS
PubMed
CrossRef
Google Scholar
Aronson AI, Shai Y (2001) Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action. FEMS Microbiol Lett 195:1–8
CAS
PubMed
CrossRef
Google Scholar
Bianchi F, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proceedings B 273:1595–1715
Google Scholar
Birch A, Geoghegan IE, Majerus MEN, Mcnicol JW, Hackett CA, Gatehouse AMR, Gatehouse J (1999) Tri-trophic interactions involving pest aphids, predatory 2-spot ladybirds and transgenic potatoes expressing snowdrop lectin for aphid resistance. Mol Breed 5:75–83
CrossRef
Google Scholar
Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435
CAS
PubMed
CrossRef
Google Scholar
Capalbo DMF, Dusi NA, Pires CS, Paula DP, Arantes OMN, Melo IS (2009) OGM e biossegurança ambiental. In: Figueiredo A (ed) Biossegurança de OGM: uma visão integrada. Publit, Rio de Janeiro, pp 190–219
Google Scholar
Carneiro MAC, Souza ED, Reis EF, Pereira HS, Azevedo WR (2009) Atributos físicos, químicos e biológicos de solo de cerrado sob diferentes sistemas de uso e manejo. Rev Bras Ciênc Solo 33:147–157
CAS
CrossRef
Google Scholar
Costa MLM (2011) Caracterização molecular de genes cyt de cepas de Bacillus thuringiensis e avaliação da toxicidade de proteínas inseticidas contra Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Dissertation, Universidade Federal de Lavras
Google Scholar
Dale PJ, Clarke B, Fontes EM (2002) Potential for the environmental impact of transgenic crops. Nat Biotechnol 20:567–574
CAS
PubMed
CrossRef
Google Scholar
De Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199
PubMed
CrossRef
Google Scholar
Figueiredo MLC, Dias AMPM, Cruz I (2006) Associação entre inimigos naturais e Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae) na cultura do milho. Rev Bras Milho Sorgo 5:340–350
CrossRef
Google Scholar
Fontes EMG, Pires CSS, Suji ER (2003) O impacto de plantas geneticamente modificadas resistentes a insetos sobre a biodiversidade. In: Pires CSS, Fontes EMG, Suji ER (eds) Impacto ecológico de plantas geneticamente modificadas: o algodão resistente a insetos como estudo de caso. Embrapa, Brasília, pp 65–83
Google Scholar
Gomis-Cebolla J, De Escudero IR, Vera-Velasco NM, Hernández-Martínez P, Hernández-Rodríguez CS, Ceballos T, Palma L, Escriche B, Caballero P, Ferré J (2017) Insecticidal spectrum and mode of action of the Bacillus thuringiensis Vip3Ca insecticidal protein. J Invertebr Pathol 142:60–67
CAS
PubMed
CrossRef
Google Scholar
Hilbeck A, Schmidt JEU (2006) Another view on Bt proteins: how specific are they and what else might they do? Biopestic Int 2:1–50
Google Scholar
Hilbeck A, Baumgartner M, Fried PM, Bigler F (1998) Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environ Entomol 27:480–487
CrossRef
Google Scholar
International Service for the Acquisition of Agri-biotech Applications (2016) Global status of commercialized biotech/GM crops: brief n. 46. Manila
Google Scholar
International Service for the Acquisition of Agri-biotech Applications (2017) Global status of commercialized biotech/GM crops in 2017: biotech crop adoption surges as economic benefits accumulate in 22 years: brief n. 53. Isaa, Ithaca
Google Scholar
Leite NA, Mendes SM, Santos CA, Pereira EJG (2014) Does Cry1Ab maize interfere in the biology and behavioural traits of Podisus nigrispinus? Bull Insectol 67:265–271
Google Scholar
Liu X, Chen M, Collins HL, Onstad DW, Roush RT, Zhang Q, Earle ED, Shelton AM (2014) Natural enemies delay insect resistance to bt crops. PLoS One 9:e90366
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Losey JE, Rayor LS, Carter ME (1999) Transgenic pollen harms monarch larvae. Nature 399:214–215
CAS
PubMed
CrossRef
Google Scholar
Lourenção ALF, Fernandes MG (2013) Avaliação do milho Bt Cry1Ab e Cry1F no controle de Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) em condições de campo. Científica 4:164–188
Google Scholar
Lundgren JG, Gassmann AJ, Bernal J, Duan JJ, Ruberson J (2009) Ecological compatibility of GM crops and biological control. Crop Prot 28:1017–1030
CrossRef
Google Scholar
Marques LH, Santos AC, Castro BA, Storer NP, Babcock JM, Lepping MD, Sa V, Moscardini VF, Rule DM, Fernandes OA (2018) Impact of transgenic soybean expressing Cry1Ac and Cry1F proteins on the non-target arthropod community associated with soybean in Brazil. PLoS One 13:e0191567
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Mendes SM, Brasil KGB, Waquil MS, Marucci RC, Waquil JM (2012a) Biological and behavioral aspects of predator, Orius insidiosus (SAY, 1832) in Bt and non-Bt maize. Biosci J 28:753–761
Google Scholar
Mendes SM, Resende DC, Leite NA, Oliveira FS, Santos CA, Barbosa TAN (2012b) Avaliação de variáveis comportamentais como metodologia para estudo de organismos não alvo em milho Bt (Circular Técnica; vol 21) Embrapa Milho e Sorgo, Sete Lagoas
Google Scholar
Miranda JE, Mendes SM, Hirose E (2017) Refúgio como estratégia de manejo da resistência. A Granja 73:40–42
Google Scholar
Östman Ö, Ekbom B, Bengtsson J (2003) Yield increase attributable to aphid predation by ground-living polyphagous natural enemies in spring barley in Sweden. Ecol Econ 45:149–158
CrossRef
Google Scholar
Paula DP, Andow DA (2016) Uptake and bioaccumulation of Cry toxins by an aphidophagous predator. Environ Pollut 209:164–168
CAS
PubMed
CrossRef
Google Scholar
Paula DP, Andow DA, Timbó RV, Sujii ER, Pires CSS, Fontes EMG (2014) Uptake and transfer of a Bt toxin by a Lepidoptera to its eggs and effects on its offspring. PLoS One 9:e95422
PubMed
PubMed Central
CrossRef
Google Scholar
Peralta C, Palma L (2017) Is the insect world overcoming the efficacy of Bacillus thuringiensis? Toxins 9:1–5
CrossRef
CAS
Google Scholar
Pires CSS, Suji ER, Fontes EMG (2003) Avaliação de risco de plantas geneticamente modificadas resistentes a insetos sobre inimigos naturais. In: Pires CSS, Fontes EMG, Suji ER (eds) Impacto ecológico de plantas geneticamente modificadas: o algodão resistente a insetos como estudo de caso. Embrapa, Brasília, pp 85–115
Google Scholar
Resende DC, Mendes SM, Marucci RC, Silva AC, Campanha MM, Waquil JM (2016) Does Bt maize cultivation affect the non-target insect community in the agro ecosystem? Rev Bras Entomol 60:82–93
CrossRef
Google Scholar
Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71
CAS
PubMed
CrossRef
Google Scholar
Romeis J, Hellmich RL, Candolfi MP, Carstens K, De Schrijver A, Gatehouse AM, Herman RA, Huesing JE, Mclean MA, Raybould A, Shelton AM, Waggoner A (2011) Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants. Transgenic Res 20:1–22
CAS
PubMed
CrossRef
Google Scholar
Romeis J, Raybould A, Bigler F, Candolfi MP, Hellmich RL, Huesing JE, Shelton AM (2013) Deriving criteria to select arthropod species for laboratory tests to assess the ecological risks from cultivating arthropod-resistant genetically engineered crops. Chemosphere 90:901–909
CAS
PubMed
CrossRef
Google Scholar
Romeis J, Meissle M, Álvarez-Alfagem F, Bigler F, Bohan DA, Devos Y, Malone LA, Pons X, Rauschen S (2014) Potential use of an arthropod database to support the non-target risk assessment and monitoring of transgenic plants. Transgenic Res 23:995–1013
CAS
PubMed
CrossRef
Google Scholar
Schrijver AD, Devos Y, De Clercq P, Gathmann A, Romeis J (2016) Quality of laboratory studies assessing effects of Bt-proteins on non-target organisms: minimal criteria for acceptability. Nat Biotechnol 25:395–411
Google Scholar
Schuler TH, Potting RP, Denholm I, Poppy GM (1999) Parasitoid behaviour and Bt plants. Nature 400:825–829
CAS
PubMed
CrossRef
Google Scholar
Shelton AM, Romeis J, Naranjo SE, Tian JC, Hellmich RL (2016) Use of Bt-resistant caterpillars to assess the effect of Cry proteins on beneficial natural enemies. IOBC-WPRS Bull 114:51–55
Google Scholar
Stallman HR, James HSJ (2015) Determinants affecting farmers’ willingness to cooperate to control pests. Ecol Econ 117:182–192
CrossRef
Google Scholar
Tabashnik EB, Carrière Y (2017) Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35:926–935
CAS
PubMed
CrossRef
Google Scholar
Talebi K, Kavousi A, Sabahi Q (2008) Impacts of pesticides on arthropod biological control agents. Pest Technol 2:87–97
Google Scholar
Tavares J, Wang KH, Hooks CRR (2015) An evaluation of insectary plants for management of insect pests in a hydroponic cropping system. Biol Control 91:1–9
CrossRef
Google Scholar
Tian J, Collins HL, Romeis J, Naranjo SE, Hellmich RL, Shelton AM (2012) Using field-evolved resistance to Cry1F maize in a lepidopteran pest to demonstrate no adverse effects of Cry1F on one of its major predators. Transgenic Res 21:1303–1310
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Tian J, Yao J, Long LP, Romeis J, Shelton AM (2015) Bt crops benefit natural enemies to control non-target pests. Sci Rep 5:1–6
CAS
Google Scholar
Yang H, Peng Y, Tian J, Wang J, Hu J, Song Q, Wang Z (2017) Review: biosafety assessment of Bt rice and other Bt crops using spiders as example for non-target arthropods in China. Plant Cell Rep 36:505–517
CAS
PubMed
CrossRef
Google Scholar
Zhang W, Ricketts TH, Kremen C, Carney K, Swinton SM (2007) Ecosystem services and disservices to agriculture. Ecol Econ 64:253–260
CrossRef
Google Scholar