Skip to main content

Effects of Genetically Modified Plants with Bt Toxins on Natural Enemies

Abstract

This chapter contains a brief explanation about the bacterium Bacillus thuringiensis, its characteristics, mode of action, and possible effects to nontarget organisms, especially the natural enemies. A nontarget organism is any individual that is present in genetically modified (GM) crop environment and is not the target of control by the toxic protein. The natural enemies, such as predators or parasitoids and entomopathogens, are agents of control of insect pests, which are essential to maintain the stability of agroecosystems. However, since the liberation of transgenic Bt crops, there has been a gradual increase in the use of this tool of control and, with this, an increasing concern about its possible effects on natural enemies. These organisms can be directly and indirectly affected; therefore, monitoring and studying how these organisms interact in GM plants are necessary. This chapter approaches manners to evaluate the direct and indirect effects of GM plants on natural enemies to help understand the compatibility of the use of GM crops with biological control.

Keywords

  • Bacillus thuringiensis
  • Nontarget
  • Bt crops
  • Tritrophic interaction

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-24733-1_39
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-24733-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

References

  • Andow DA, Lövei GL, Arpaia S (2006) Ecological risk assessment for Bt crops. Nat Biotechnol 24:749–751

    CAS  PubMed  CrossRef  Google Scholar 

  • Aronson AI, Shai Y (2001) Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action. FEMS Microbiol Lett 195:1–8

    CAS  PubMed  CrossRef  Google Scholar 

  • Bianchi F, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proceedings B 273:1595–1715

    Google Scholar 

  • Birch A, Geoghegan IE, Majerus MEN, Mcnicol JW, Hackett CA, Gatehouse AMR, Gatehouse J (1999) Tri-trophic interactions involving pest aphids, predatory 2-spot ladybirds and transgenic potatoes expressing snowdrop lectin for aphid resistance. Mol Breed 5:75–83

    CrossRef  Google Scholar 

  • Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    CAS  PubMed  CrossRef  Google Scholar 

  • Capalbo DMF, Dusi NA, Pires CS, Paula DP, Arantes OMN, Melo IS (2009) OGM e biossegurança ambiental. In: Figueiredo A (ed) Biossegurança de OGM: uma visão integrada. Publit, Rio de Janeiro, pp 190–219

    Google Scholar 

  • Carneiro MAC, Souza ED, Reis EF, Pereira HS, Azevedo WR (2009) Atributos físicos, químicos e biológicos de solo de cerrado sob diferentes sistemas de uso e manejo. Rev Bras Ciênc Solo 33:147–157

    CAS  CrossRef  Google Scholar 

  • Costa MLM (2011) Caracterização molecular de genes cyt de cepas de Bacillus thuringiensis e avaliação da toxicidade de proteínas inseticidas contra Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Dissertation, Universidade Federal de Lavras

    Google Scholar 

  • Dale PJ, Clarke B, Fontes EM (2002) Potential for the environmental impact of transgenic crops. Nat Biotechnol 20:567–574

    CAS  PubMed  CrossRef  Google Scholar 

  • De Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199

    PubMed  CrossRef  Google Scholar 

  • Figueiredo MLC, Dias AMPM, Cruz I (2006) Associação entre inimigos naturais e Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae) na cultura do milho. Rev Bras Milho Sorgo 5:340–350

    CrossRef  Google Scholar 

  • Fontes EMG, Pires CSS, Suji ER (2003) O impacto de plantas geneticamente modificadas resistentes a insetos sobre a biodiversidade. In: Pires CSS, Fontes EMG, Suji ER (eds) Impacto ecológico de plantas geneticamente modificadas: o algodão resistente a insetos como estudo de caso. Embrapa, Brasília, pp 65–83

    Google Scholar 

  • Gomis-Cebolla J, De Escudero IR, Vera-Velasco NM, Hernández-Martínez P, Hernández-Rodríguez CS, Ceballos T, Palma L, Escriche B, Caballero P, Ferré J (2017) Insecticidal spectrum and mode of action of the Bacillus thuringiensis Vip3Ca insecticidal protein. J Invertebr Pathol 142:60–67

    CAS  PubMed  CrossRef  Google Scholar 

  • Hilbeck A, Schmidt JEU (2006) Another view on Bt proteins: how specific are they and what else might they do? Biopestic Int 2:1–50

    Google Scholar 

  • Hilbeck A, Baumgartner M, Fried PM, Bigler F (1998) Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environ Entomol 27:480–487

    CrossRef  Google Scholar 

  • International Service for the Acquisition of Agri-biotech Applications (2016) Global status of commercialized biotech/GM crops: brief n. 46. Manila

    Google Scholar 

  • International Service for the Acquisition of Agri-biotech Applications (2017) Global status of commercialized biotech/GM crops in 2017: biotech crop adoption surges as economic benefits accumulate in 22 years: brief n. 53. Isaa, Ithaca

    Google Scholar 

  • Leite NA, Mendes SM, Santos CA, Pereira EJG (2014) Does Cry1Ab maize interfere in the biology and behavioural traits of Podisus nigrispinus? Bull Insectol 67:265–271

    Google Scholar 

  • Liu X, Chen M, Collins HL, Onstad DW, Roush RT, Zhang Q, Earle ED, Shelton AM (2014) Natural enemies delay insect resistance to bt crops. PLoS One 9:e90366

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Losey JE, Rayor LS, Carter ME (1999) Transgenic pollen harms monarch larvae. Nature 399:214–215

    CAS  PubMed  CrossRef  Google Scholar 

  • Lourenção ALF, Fernandes MG (2013) Avaliação do milho Bt Cry1Ab e Cry1F no controle de Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) em condições de campo. Científica 4:164–188

    Google Scholar 

  • Lundgren JG, Gassmann AJ, Bernal J, Duan JJ, Ruberson J (2009) Ecological compatibility of GM crops and biological control. Crop Prot 28:1017–1030

    CrossRef  Google Scholar 

  • Marques LH, Santos AC, Castro BA, Storer NP, Babcock JM, Lepping MD, Sa V, Moscardini VF, Rule DM, Fernandes OA (2018) Impact of transgenic soybean expressing Cry1Ac and Cry1F proteins on the non-target arthropod community associated with soybean in Brazil. PLoS One 13:e0191567

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Mendes SM, Brasil KGB, Waquil MS, Marucci RC, Waquil JM (2012a) Biological and behavioral aspects of predator, Orius insidiosus (SAY, 1832) in Bt and non-Bt maize. Biosci J 28:753–761

    Google Scholar 

  • Mendes SM, Resende DC, Leite NA, Oliveira FS, Santos CA, Barbosa TAN (2012b) Avaliação de variáveis comportamentais como metodologia para estudo de organismos não alvo em milho Bt (Circular Técnica; vol 21) Embrapa Milho e Sorgo, Sete Lagoas

    Google Scholar 

  • Miranda JE, Mendes SM, Hirose E (2017) Refúgio como estratégia de manejo da resistência. A Granja 73:40–42

    Google Scholar 

  • Östman Ö, Ekbom B, Bengtsson J (2003) Yield increase attributable to aphid predation by ground-living polyphagous natural enemies in spring barley in Sweden. Ecol Econ 45:149–158

    CrossRef  Google Scholar 

  • Paula DP, Andow DA (2016) Uptake and bioaccumulation of Cry toxins by an aphidophagous predator. Environ Pollut 209:164–168

    CAS  PubMed  CrossRef  Google Scholar 

  • Paula DP, Andow DA, Timbó RV, Sujii ER, Pires CSS, Fontes EMG (2014) Uptake and transfer of a Bt toxin by a Lepidoptera to its eggs and effects on its offspring. PLoS One 9:e95422

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Peralta C, Palma L (2017) Is the insect world overcoming the efficacy of Bacillus thuringiensis? Toxins 9:1–5

    CrossRef  CAS  Google Scholar 

  • Pires CSS, Suji ER, Fontes EMG (2003) Avaliação de risco de plantas geneticamente modificadas resistentes a insetos sobre inimigos naturais. In: Pires CSS, Fontes EMG, Suji ER (eds) Impacto ecológico de plantas geneticamente modificadas: o algodão resistente a insetos como estudo de caso. Embrapa, Brasília, pp 85–115

    Google Scholar 

  • Resende DC, Mendes SM, Marucci RC, Silva AC, Campanha MM, Waquil JM (2016) Does Bt maize cultivation affect the non-target insect community in the agro ecosystem? Rev Bras Entomol 60:82–93

    CrossRef  Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71

    CAS  PubMed  CrossRef  Google Scholar 

  • Romeis J, Hellmich RL, Candolfi MP, Carstens K, De Schrijver A, Gatehouse AM, Herman RA, Huesing JE, Mclean MA, Raybould A, Shelton AM, Waggoner A (2011) Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants. Transgenic Res 20:1–22

    CAS  PubMed  CrossRef  Google Scholar 

  • Romeis J, Raybould A, Bigler F, Candolfi MP, Hellmich RL, Huesing JE, Shelton AM (2013) Deriving criteria to select arthropod species for laboratory tests to assess the ecological risks from cultivating arthropod-resistant genetically engineered crops. Chemosphere 90:901–909

    CAS  PubMed  CrossRef  Google Scholar 

  • Romeis J, Meissle M, Álvarez-Alfagem F, Bigler F, Bohan DA, Devos Y, Malone LA, Pons X, Rauschen S (2014) Potential use of an arthropod database to support the non-target risk assessment and monitoring of transgenic plants. Transgenic Res 23:995–1013

    CAS  PubMed  CrossRef  Google Scholar 

  • Schrijver AD, Devos Y, De Clercq P, Gathmann A, Romeis J (2016) Quality of laboratory studies assessing effects of Bt-proteins on non-target organisms: minimal criteria for acceptability. Nat Biotechnol 25:395–411

    Google Scholar 

  • Schuler TH, Potting RP, Denholm I, Poppy GM (1999) Parasitoid behaviour and Bt plants. Nature 400:825–829

    CAS  PubMed  CrossRef  Google Scholar 

  • Shelton AM, Romeis J, Naranjo SE, Tian JC, Hellmich RL (2016) Use of Bt-resistant caterpillars to assess the effect of Cry proteins on beneficial natural enemies. IOBC-WPRS Bull 114:51–55

    Google Scholar 

  • Stallman HR, James HSJ (2015) Determinants affecting farmers’ willingness to cooperate to control pests. Ecol Econ 117:182–192

    CrossRef  Google Scholar 

  • Tabashnik EB, Carrière Y (2017) Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35:926–935

    CAS  PubMed  CrossRef  Google Scholar 

  • Talebi K, Kavousi A, Sabahi Q (2008) Impacts of pesticides on arthropod biological control agents. Pest Technol 2:87–97

    Google Scholar 

  • Tavares J, Wang KH, Hooks CRR (2015) An evaluation of insectary plants for management of insect pests in a hydroponic cropping system. Biol Control 91:1–9

    CrossRef  Google Scholar 

  • Tian J, Collins HL, Romeis J, Naranjo SE, Hellmich RL, Shelton AM (2012) Using field-evolved resistance to Cry1F maize in a lepidopteran pest to demonstrate no adverse effects of Cry1F on one of its major predators. Transgenic Res 21:1303–1310

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Tian J, Yao J, Long LP, Romeis J, Shelton AM (2015) Bt crops benefit natural enemies to control non-target pests. Sci Rep 5:1–6

    CAS  Google Scholar 

  • Yang H, Peng Y, Tian J, Wang J, Hu J, Song Q, Wang Z (2017) Review: biosafety assessment of Bt rice and other Bt crops using spiders as example for non-target arthropods in China. Plant Cell Rep 36:505–517

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhang W, Ricketts TH, Kremen C, Carney K, Swinton SM (2007) Ecosystem services and disservices to agriculture. Ecol Econ 64:253–260

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Martins Mendes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Souza, C.S.F., Marucci, R.C., Chaves, D.R., Mendes, S.M. (2019). Effects of Genetically Modified Plants with Bt Toxins on Natural Enemies. In: Souza, B., Vázquez, L., Marucci, R. (eds) Natural Enemies of Insect Pests in Neotropical Agroecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-24733-1_39

Download citation